I have a PySpark dataframe like
name city date
satya Mumbai 13/10/2016
satya Pune 02/11/2016
satya Mumbai 22/11/2016
satya Pune 29/11/2016
satya Delhi 30/11/2016
panda Delhi 29/11/2016
brata BBSR 28/11/2016
brata Goa 30/10/2016
brata Goa 30/10/2016
I need to find-out most preferred CITY for each name and Logic is " take city as fav_city if city having max no. of city occurrence on aggregate 'name'+'city' pair". And if multiple same occurrence found then consider city with latest Date. WIll explain:
d = df.groupby('name','city').count()
#name city count
brata Goa 2 #clear favourite
brata BBSR 1
panda Delhi 1 #as single so clear favourite
satya Pune 2 ##Confusion
satya Mumbai 2 ##confusion
satya Delhi 1 ##shd be discard as other cities having higher count than this city
#So get cities having max count
dd = d.groupby('name').agg(F.max('count').alias('count'))
ddd = dd.join(d,['name','count'],'left')
#name count city
brata 2 Goa #fav found
panda 1 Delhi #fav found
satya 2 Mumbai #can't say
satya 2 Pune #can't say
In case of user 'satya' I need to go back to trx_history and get latest date for cities having equal_max count I:e from 'Mumbai' or 'Pune' which is last transacted (max date), consider that city as fav_city. In this case 'Pune' as '29/11/2016' is latest/max date.
But I am not able to proceed further how to get that done.
Please help me with logic or if any better solution(faster/compact way), please suggest. Thanks.
First convert date to the DateType
:
import pyspark.sql.functions as F
df_with_date = df.withColumn(
"date",
F.to_date("date", "dd/MM/yyyy")
# For Spark < 2.2
# F.unix_timestamp("date", "dd/MM/yyyy").cast("timestamp").cast("date")
)
Next groupBy
user and city but extend aggregation like this:
df_agg = (df_with_date
.groupBy("name", "city")
.agg(F.count("city").alias("count"), F.max("date").alias("max_date")))
Define a window:
from pyspark.sql.window import Window
w = Window().partitionBy("name").orderBy(F.desc("count"), F.desc("max_date"))
Add rank:
df_with_rank = (df_agg
.withColumn("rank", F.dense_rank().over(w)))
And filter:
result = df_with_rank.where(F.col("rank") == 1)
You can detect remaining duplicates using code like this:
import sys
final_w = Window().partitionBy("name").rowsBetween(-sys.maxsize, sys.maxsize)
result.withColumn("tie", F.count("*").over(final_w) != 1)
d = df.groupby('name','city').count()
#name city count
brata Goa 2 #clear favourite
brata BBSR 1
panda Delhi 1 #as single so clear favourite
satya Pune 2 ##Confusion
satya Mumbai 2 ##confusion
satya Delhi 1 ##shd be discard as other cities having higher count than this city
#So get cities having max count
dd = d.groupby('name').count().sort(F.col('count').desc())
display(dd.take(1))
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With