What is a good workflow for detecting performance regressions in R packages? Ideally, I'm looking for something that integrates with R CMD check
that alerts me when I have introduced a significant performance regression in my code.
What is a good workflow in general? What other languages provide good tools? Is it something that can be built on top unit testing, or that is usually done separately?
A step-by-step guide to linear regression in R. 1 Step 1: Load the data into R. Follow these four steps for each dataset: 2 Step 2: Make sure your data meet the assumptions. 3 Step 3: Perform the linear regression analysis. 4 Step 4: Check for homoscedasticity. 5 Step 5: Visualize the results with a graph. More items
A logistic model is used when the response variable has categorical values such as 0 or 1. For example, a student will pass/fail, a mail is spam or not, determining the images, etc. In this article, we’ll discuss regression analysis, types of regression, and implementation of logistic regression in R programming.
Inadequate memory can slow down your code as well as make it impossible to execute programs when allocated with complex vectors. One way to do this is to write small functions and run them instead of running everything directly in a working environment. Wait! Have you checked – R Graphic Devices Tutorial 2. The Dreaded for Loop
R’s syntax is very flexible, making it convenient at the cost of performance. R is indeed slow when compared to many other scripting languages, but there are a few tricks which can make our R code run faster: Use a matrix instead of a data frame whenever possible as data frame cause problem in many cases.
This is a very challenging question, and one that I'm frequently dealing with, as I swap out different code in a package to speed things up. Sometimes a performance regression comes along with a change in algorithms or implementation, but it may also arise due to changes in the data structures used.
What is a good workflow for detecting performance regressions in R packages?
In my case, I tend to have very specific use cases that I'm trying to speed up, with different fixed data sets. As Spacedman wrote, it's important to have a fixed computing system, but that's almost infeasible: sometimes a shared computer may have other processes that slow things down 10-20%, even when it looks quite idle.
My steps:
Examine the profiling output as vigorously as possible (see this question for some insights, also referencing tools from the OP).
Ideally, I'm looking for something that integrates with R CMD check that alerts me when I have introduced a significant performance regression in my code.
Unfortunately, I don't have an answer for this.
What is a good workflow in general?
For me, it's quite similar to general dynamic code testing: is the output (execution time in this case) reproducible, optimal, and transparent? Transparency comes from understanding what affects the overall time. This is where Mike Dunlavey's suggestions are important, but I prefer to go further, with a line profiler.
Regarding a line profiler, see my previous question, which refers to options in Python and Matlab for other examples. It's most important to examine clock time, but also very important to track memory allocation, number of times the line is executed, and call stack depth.
What other languages provide good tools?
Almost all other languages have better tools. :) Interpreted languages like Python and Matlab have the good & possibly familiar examples of tools that can be adapted for this purpose. Although dynamic analysis is very important, static analysis can help identify where there may be some serious problems. Matlab has a great static analyzer that can report when objects (e.g. vectors, matrices) are growing inside of loops, for instance. It is terrible to find this only via dynamic analysis - you've already wasted execution time to discover something like this, and it's not always discernible if your execution context is pretty simple (e.g. just a few iterations, or small objects).
As far as language-agnostic methods, you can look at:
Is it something that can be built on top unit testing, or that is usually done separately?
This is hard to answer. For static analysis, it can occur before unit testing. For dynamic analysis, one may want to add more tests. Think of it as sequential design (i.e. from an experimental design framework): if the execution costs appear to be, within some statistical allowances for variation, the same, then no further tests are needed. If, however, method B seems to have an average execution cost greater than method A, then one should perform more intensive tests.
Update 1: If I may be so bold, there's another question that I'd recommend including, which is: "What are some gotchas in comparing the execution time of two versions of a package?" This is analogous to assuming that two programs that implement the same algorithm should have the same intermediate objects. That's not exactly true (see this question - not that I'm promoting my own questions, here - it's just hard work to make things better and faster...leading to multiple SO questions on this topic :)). In a similar way, two executions of the same code can differ in time consumed due to factors other than the implementation.
So, some gotchas that can occur, either within the same language or across languages, within the same execution instance or across "identical" instances, which can affect runtime:
The key result is: Ideally, how should we test for differences in expected values, subject to the randomness created due to order effects? Well, pretty simple: go back to experimental design. :)
When the empirical differences in execution times are different from the "expected" differences, it's great to have enabled additional system and execution monitoring so that we don't have to re-run the experiments until we're blue in the face.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With