I'm doing online course and got stuck at this problem.
The first line contains two non-negative integers 1 ≤ n, m ≤ 50000 — the number of segments and points on a line, respectively. The next n lines contain two integers a_i ≤ b_i defining the i-th segment. The next line contain m integers defining points. All the integers are of absolute value at most 10^8. For each segment, output the number of points it is used from the n
-points table.
My solution is :
for point in points:
occurrence = 0
for l, r in segments:
if l <= point <= r:
occurrence += 1
print(occurrence),
The complexity of this algorithm is O(m*n), which is obviously not very efficient. What is the best way of solving this problem? Any help will be appreciated!
Sample Input:
2 3
0 5
7 10
1 6 11
Sample Output:
1 0 0
Sample Input 2:
1 3
-10 10
-100 100 0
Sample Output 2:
0 0 1
Total 6 line segments.
A ruler, a pencil, and a stick are examples of a line segment in real life.
To find the coordinates of the point X add the components of the segment ¯PX to the coordinates of the initial point P. So, the coordinates of the point X are (1+2,6−1.25)=(3,4.75).
You can use sweep line algorithm to solve this problem.
First, break each segment into two points, open and close points.
Add all these points together with those m
points, and sort them based on their locations.
Iterating through the list of points, maintaining a counter
, every time you encounter an open point, increase the counter
, and if you encounter an end point, decrease it. If you encounter a point in list m
point, the result for this point is the value of counter
at this moment.
For example 2, we have:
1 3
-10 10
-100 100 0
After sorting, what we have is:
-100 -10 0 10 100
At point -100, we have `counter = 0`
At point -10, this is open point, we increase `counter = 1`
At point 0, so result is 1
At point 10, this is close point, we decrease `counter = 0`
At point 100, result is 0
So, result for point -100 is 0, point 100 is 0 and point 0 is 1 as expected.
Time complexity is O((n + m) log (n + m)).
[Original answer] by how many segments is each point used
I am not sure I got the problem correctly but looks like simple example of Histogram use ...
process the last line incrementing each used point counter O(m)
write the answer by reading histogram O(n)
So the result should be O(m+n)
something like (C++):
const int n=2,m=3;
const int p[n][2]={ {0,5},{7,10} };
const int s[m]={1,6,11};
int i,cnt[n];
for (i=0;i<n;i++) cnt[i]=0;
for (i=0;i<m;i++) if ((s[i]>=0)&&(s[i]<n)) cnt[s[i]]++;
for (i=0;i<n;i++) cout << cnt[i] << " "; // result: 0 1
But as you can see the p[]
coordinates are never used so either I missed something in your problem description or you missing something or it is there just to trick solvers ...
[edit1] after clearing the inconsistencies in OP the result is a bit different
By how many points is each segment used:
O(m)
O(m)
So the result is O(m)
something like (C++):
const int n=2,m=3;
const int p[n][2]={ {0,5},{7,10} };
const int s[m]={1,6,11};
int i,cnt[m];
for (i=0;i<m;i++) cnt[i]=0;
for (i=0;i<m;i++) if ((s[i]>=0)&&(s[i]<n)) cnt[i]++;
for (i=0;i<m;i++) cout << cnt[i] << " "; // result: 1,0,0
[Notes]
After added new sample set to OP it is clear now that:
0
p[n]
are really used by each segment (m
numbers in output)Use Binary Search.
Sort the line segments according to 1st value and the second value. If you use c++
, you can use custom sort like this:
sort(a,a+n,fun); //a is your array of pair<int,int>, coordinates representing line
bool fun(pair<int,int> a, pair<int,int> b){
if(a.first<b.first)
return true;
if(a.first>b.first)
return false;
return a.second < b.second;
}
Then, for every point, find the 1st line that captures the point and the first line that does not (after the line that does of course). If no line captures the point, you can return -1 or something (and not check for the point that does not).
Something like:
int checkFirstHold(pair<int,int> a[], int p,int min, int max){ //p is the point
while(min < max){
int mid = (min + max)/2;
if(a[mid].first <= p && a[mid].second>=p && a[mid-1].first<p && a[mid-1].second<p) //ie, p is in line a[mid] and not in line a[mid-1]
return mid;
if(a[mid].first <= p && a[mid].second>=p && a[mid-1].first<=p && a[mid-1].second>=p) //ie, p is both in line a[mid] and not in line a[mid-1]
max = mid-1;
if(a[mid].first < p && a[mid].second<p ) //ie, p is not in line a[mid]
min = mid + 1;
}
return -1; //implying no point holds the line
}
Similarly, write a checkLastHold function.
Then, find checkLastHold - checkFirstHold
for every point, which is the answer.
The complexity of this solution will be O(n log m), as it takes (log m) for every calculation.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With