I was running a path analysis model but it seems that model fit indexes were perfect: CFI = 1.00, RMSEA = 0.00. However, perfect model fits usually indicate saturated model. But it seems that my model is NOT the case since I have extra degrees of freedom. Then, how to interpret CFI and RMSEA? Thanks so much for your help!
lavaan (0.5-21) converged normally after 39 iterations
Number of observations 109
Number of missing patterns 6
Estimator ML
Minimum Function Test Statistic 6.199
Degrees of freedom 11
P-value (Chi-square) 0.860
Model test baseline model:
Minimum Function Test Statistic 150.084
Degrees of freedom 20
P-value 0.000
User model versus baseline model:
Comparative Fit Index (CFI) 1.000
Tucker-Lewis Index (TLI) 1.067
Loglikelihood and Information Criteria:
Loglikelihood user model (H0) -1000.419
Loglikelihood unrestricted model (H1) -997.320
Number of free parameters 19
Akaike (AIC) 2038.838
Bayesian (BIC) 2089.974
Sample-size adjusted Bayesian (BIC) 2029.936
Root Mean Square Error of Approximation:
RMSEA 0.000
90 Percent Confidence Interval 0.000 0.054
P-value RMSEA <= 0.05 0.941
Standardized Root Mean Square Residual:
SRMR 0.052
Parameter Estimates:
Information Observed
Standard Errors Standard
Regressions:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
SelfEsteem ~
EnglishNam (a) -0.382 0.184 -2.073 0.038 -0.382 -0.200
Well_Being ~
SelfEsteem (b) 0.668 0.095 6.998 0.000 0.668 0.558
EnglishName ~
RmmbrChnsN -0.057 0.035 -1.623 0.105 -0.057 -0.204
PrnncChnsN -0.064 0.032 -1.981 0.048 -0.064 -0.249
MentalHealth ~
SelfEsteem (c) 0.779 0.088 8.846 0.000 0.779 0.656
GeneralPhysicalHealth ~
SelfEsteem (d) 0.335 0.099 3.368 0.001 0.335 0.314
Covariances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.Well_Being ~~
.MentalHealth 0.085 0.079 1.076 0.282 0.085 0.105
.GnrlPhysclHlth 0.196 0.091 2.153 0.031 0.196 0.214
.MentalHealth ~~
.GnrlPhysclHlth 0.191 0.083 2.308 0.021 0.191 0.233
Intercepts:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.SelfEsteem 5.605 0.126 44.424 0.000 5.605 5.880
.Well_Being 0.860 0.525 1.638 0.101 0.860 0.754
.EnglishName 1.014 0.132 7.701 0.000 1.014 2.031
.MentalHealth 0.708 0.485 1.460 0.144 0.708 0.626
.GnrlPhysclHlth 3.756 0.548 6.854 0.000 3.756 3.700
Variances:
Estimate Std.Err z-value P(>|z|) Std.lv Std.all
.SelfEsteem 0.872 0.119 7.356 0.000 0.872 0.960
.Well_Being 0.896 0.122 7.329 0.000 0.896 0.689
.EnglishName 0.206 0.029 7.127 0.000 0.206 0.826
.MentalHealth 0.728 0.101 7.201 0.000 0.728 0.569
.GnrlPhysclHlth 0.929 0.129 7.211 0.000 0.929 0.901
I read somewhere online that modeling problems exist when the chi-square contribution is less than the degrees of freedom for any given step of a model (i.e., baseline fit for testing configural invariance or step comparing metric model to configural model, etc.) I have never run into this problem before and I do not really understand it. However, across the board, this seems to be the case for all of the models that have corresponding "perfect fit."
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With