Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Path analysis: CFI = 1, RMSEA = 0

I was running a path analysis model but it seems that model fit indexes were perfect: CFI = 1.00, RMSEA = 0.00. However, perfect model fits usually indicate saturated model. But it seems that my model is NOT the case since I have extra degrees of freedom. Then, how to interpret CFI and RMSEA? Thanks so much for your help!

lavaan (0.5-21) converged normally after  39 iterations

  Number of observations                           109

  Number of missing patterns                         6

  Estimator                                         ML
  Minimum Function Test Statistic                6.199
  Degrees of freedom                                11
  P-value (Chi-square)                           0.860

Model test baseline model:

  Minimum Function Test Statistic              150.084
  Degrees of freedom                                20
  P-value                                        0.000

User model versus baseline model:

  Comparative Fit Index (CFI)                    1.000
  Tucker-Lewis Index (TLI)                       1.067

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -1000.419
  Loglikelihood unrestricted model (H1)       -997.320

  Number of free parameters                         19
  Akaike (AIC)                                2038.838
  Bayesian (BIC)                              2089.974
  Sample-size adjusted Bayesian (BIC)         2029.936

Root Mean Square Error of Approximation:

  RMSEA                                          0.000
  90 Percent Confidence Interval          0.000  0.054
  P-value RMSEA <= 0.05                          0.941

Standardized Root Mean Square Residual:

  SRMR                                           0.052

Parameter Estimates:

  Information                                 Observed
  Standard Errors                             Standard

Regressions:
                          Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  SelfEsteem ~                                                                 
    EnglishNam (a)          -0.382    0.184   -2.073    0.038   -0.382   -0.200
  Well_Being ~                                                                 
    SelfEsteem (b)           0.668    0.095    6.998    0.000    0.668    0.558
  EnglishName ~                                                                
    RmmbrChnsN              -0.057    0.035   -1.623    0.105   -0.057   -0.204
    PrnncChnsN              -0.064    0.032   -1.981    0.048   -0.064   -0.249
  MentalHealth ~                                                               
    SelfEsteem (c)           0.779    0.088    8.846    0.000    0.779    0.656
  GeneralPhysicalHealth ~                                                      
    SelfEsteem (d)           0.335    0.099    3.368    0.001    0.335    0.314

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .Well_Being ~~                                                         
   .MentalHealth      0.085    0.079    1.076    0.282    0.085    0.105
   .GnrlPhysclHlth    0.196    0.091    2.153    0.031    0.196    0.214
 .MentalHealth ~~                                                       
   .GnrlPhysclHlth    0.191    0.083    2.308    0.021    0.191    0.233

    Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .SelfEsteem        5.605    0.126   44.424    0.000    5.605    5.880
   .Well_Being        0.860    0.525    1.638    0.101    0.860    0.754
   .EnglishName       1.014    0.132    7.701    0.000    1.014    2.031
   .MentalHealth      0.708    0.485    1.460    0.144    0.708    0.626
   .GnrlPhysclHlth    3.756    0.548    6.854    0.000    3.756    3.700

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .SelfEsteem        0.872    0.119    7.356    0.000    0.872    0.960
   .Well_Being        0.896    0.122    7.329    0.000    0.896    0.689
   .EnglishName       0.206    0.029    7.127    0.000    0.206    0.826
   .MentalHealth      0.728    0.101    7.201    0.000    0.728    0.569
   .GnrlPhysclHlth    0.929    0.129    7.211    0.000    0.929    0.901
like image 859
Xian Zhao Avatar asked Oct 29 '22 04:10

Xian Zhao


1 Answers

I read somewhere online that modeling problems exist when the chi-square contribution is less than the degrees of freedom for any given step of a model (i.e., baseline fit for testing configural invariance or step comparing metric model to configural model, etc.) I have never run into this problem before and I do not really understand it. However, across the board, this seems to be the case for all of the models that have corresponding "perfect fit."

like image 149
D500 Avatar answered Dec 07 '22 22:12

D500