I would like to be able to write a function that runs regressions in a data.table
by groups and then nicely organizes the results. Here is a sample of what I would like to do:
require(data.table)
dtb = data.table(y=1:10, x=10:1, z=sample(1:10), weights=1:10, thedate=1:2)
models = c("y ~ x", "y ~ z")
res = lapply(models, function(f) {dtb[,as.list(coef(lm(f, weights=weights, data=.SD))),by=thedate]})
#do more stuff with res
I would like to wrap all this into a function since the #doe more stuff
might be long. The issue I face is how to pass the various names of things to data.table
? For example, how do I pass the column name weights
? how do I pass thedate
? I envision a prototype that looks like this:
myfun = function(dtb, models, weights, dates)
Let me be clear: passing the formulas to my function is NOT the problem. If the weights
I wanted to use and the column name describing the date, thedate
were known then my function could simply look like this:
myfun = function(dtb, models) {
res = lapply(models, function(f) {dtb[,as.list(coef(lm(f, weights=weights, data=.SD))),by=thedate]})
#do more stuff with res
}
However the column names corresponding to thedate
and to the weights
are unknown in advance. I would like to pass them to my function as so:
#this will not work
myfun = function(dtb, models, w, d) {
res = lapply(models, function(f) {dtb[,as.list(coef(lm(f, weights=w, data=.SD))),by=d]})
#do more stuff with res
}
Thanks
Here is a solution that relies on having the data in long format (which makes more sense to me, in this cas
library(reshape2)
dtlong <- data.table(melt(dtb, measure.var = c('x','z')))
foo <- function(f, d, by, w ){
# get the name of the w argument (weights)
w.char <- deparse(substitute(w))
# convert `list(a,b)` to `c('a','b')`
# obviously, this would have to change depending on how `by` was defined
by <- unlist(lapply(as.list(as.list(match.call())[['by']])[-1], as.character))
# create the call substituting the names as required
.c <- substitute(as.list(coef(lm(f, data = .SD, weights = w), list(w = as.name(w.char)))))
# actually perform the calculations
d[,eval(.c), by = by]
}
foo(f= y~value, d= dtlong, by = list(variable, thedate), w = weights)
variable thedate (Intercept) value
1: x 1 11.000000 -1.00000000
2: x 2 11.000000 -1.00000000
3: z 1 1.009595 0.89019190
4: z 2 7.538462 -0.03846154
one possible solution:
fun = function(dtb, models, w_col_name, date_name) {
res = lapply(models, function(f) {dtb[,as.list(coef(lm(f, weights=eval(parse(text=w_col_name)), data=.SD))),by=eval(parse(text=paste0("list(",date_name,")")))]})
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With