I have a data frame which looks as such
A  B  C
1  3  X1=7;X2=8;X3=9
2  4  X1=10;X2=11;X3=12
5  6  X1=13;X2=14
I would like to parse the C column into separate columns as such...
A  B  X1  X2  X3
1  3  7   8   9
2  4  10  11  12
5  6  13  14  NA
How would one go about doing this in R?
First, here's the sample data in data.frame form
dd<-data.frame(
    A = c(1L, 2L, 5L), 
    B = c(3L, 4L, 6L), 
    C = c("X1=7;X2=8;X3=9", 
    "X1=10;X2=11;X3=12", "X1=13;X2=14"),
    stringsAsFactors=F
)
Now I define a small helper function to take vectors like c("A=1","B=2") and changed them into named vectors like c(A="1", B="2").
namev<-function(x) {
    a<-strsplit(x,"=")
    setNames(sapply(a,'[',2), sapply(a,'[',1))
}
and now I perform the transformations
#turn each row into a named vector
vv<-lapply(strsplit(dd$C,";"), namev)
#find list of all column names
nm<-unique(unlist(sapply(vv, names)))
#extract data from all rows for every column
nv<-do.call(rbind, lapply(vv, '[', nm))
#convert everything to numeric (optional)
class(nv)<-"numeric"
#rejoin with original data
cbind(dd[,-3], nv)
and that gives you
  A B X1 X2 X3
1 1 3  7  8  9
2 2 4 10 11 12
3 5 6 13 14 NA
                        My cSplit function makes solving problems like these fun. Here it is in action:
## Load some packages
library(data.table)
library(devtools) ## Just for source_gist, really
library(reshape2)
## Load `cSplit`
source_gist("https://gist.github.com/mrdwab/11380733")
First, split your values up and create a "long" dataset:
ddL <- cSplit(cSplit(dd, "C", ";", "long"), "C", "=")
ddL
#    A B C_1 C_2
# 1: 1 3  X1   7
# 2: 1 3  X2   8
# 3: 1 3  X3   9
# 4: 2 4  X1  10
# 5: 2 4  X2  11
# 6: 2 4  X3  12
# 7: 5 6  X1  13
# 8: 5 6  X2  14
Next, use dcast.data.table (or just dcast) to go from "long" to "wide":
dcast.data.table(ddL, A + B ~ C_1, value.var="C_2")
#    A B X1 X2 X3
# 1: 1 3  7  8  9
# 2: 2 4 10 11 12
# 3: 5 6 13 14 NA
                        Here's one possible approach:
dat <- read.table(text="A  B  C
1  3  X1=7;X2=8;X3=9
2  4  X1=10;X2=11;X3=12
5  6  X1=13;X2=14", header=TRUE, stringsAsFactors = FALSE)
library(qdapTools)
dat_C <- strsplit(dat$C, ";")
dat_C2 <- sapply(dat_C, function(x) {
    y <- strsplit(x, "=")
    rep(sapply(y, "[", 1), as.numeric(sapply(y, "[", 2)))
})
data.frame(dat[, -3], mtabulate(dat_C2))
##   A B X1 X2 X3
## 1 1 3  7  8  9
## 2 2 4 10 11 12
## 3 5 6 13 14  0
EDIT To obtain the NA values
m <- mtabulate(dat_C2)
m[m==0] <- NA
data.frame(dat[, -3], m)
                        Here's a nice, somewhat hacky way to get you there.
## read your data
> dat <- read.table(h=T, text = "A  B  C
  1  3  X1=7;X2=8;X3=9
  2  4  X1=10;X2=11;X3=12
  5  6  X1=13;X2=14", stringsAsFactors = FALSE)
## ---
> s <- strsplit(dat$C, ";|=")
> xx <- unique(unlist(s)[grepl('[A-Z]', unlist(s))])
> sap <- t(sapply(seq(s), function(i){
      wh <- which(!xx %in% s[[i]]); n <- suppressWarnings(as.numeric(s[[i]]))
      nn <- n[!is.na(n)]; if(length(wh)){ append(nn, NA, wh-1) } else { nn }
      })) ## see below for explanation
> data.frame(dat[1:2], sap)
#   A B X1 X2 X3
# 1 1 3  7  8  9
# 2 2 4 10 11 12
# 3 5 6 13 14 NA
Basically what's happening in sap is 
s to numericNA values from (2)append
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With