I have a DataFrame
with column named date
. How can we convert/parse the 'date' column to a DateTime
object?
I loaded the date column from a Postgresql database using sql.read_frame()
. An example of the date
column is 2013-04-04
.
What I am trying to do is to select all rows in a dataframe that has their date columns within a certain period, like after 2013-04-01
and before 2013-04-04
.
My attempt below gives the error 'Series' object has no attribute 'read'
Attempt
import dateutil df['date'] = dateutil.parser.parse(df['date'])
Error
AttributeError Traceback (most recent call last) <ipython-input-636-9b19aa5f989c> in <module>() 15 16 # Parse 'Date' Column to Datetime ---> 17 df['date'] = dateutil.parser.parse(df['date']) 18 19 # SELECT RECENT SALES C:\Python27\lib\site-packages\dateutil\parser.pyc in parse(timestr, parserinfo, **kwargs) 695 return parser(parserinfo).parse(timestr, **kwargs) 696 else: --> 697 return DEFAULTPARSER.parse(timestr, **kwargs) 698 699 C:\Python27\lib\site-packages\dateutil\parser.pyc in parse(self, timestr, default, ignoretz, tzinfos, **kwargs) 299 default = datetime.datetime.now().replace(hour=0, minute=0, 300 second=0, microsecond=0) --> 301 res = self._parse(timestr, **kwargs) 302 if res is None: 303 raise ValueError, "unknown string format" C:\Python27\lib\site-packages\dateutil\parser.pyc in _parse(self, timestr, dayfirst, yearfirst, fuzzy) 347 yearfirst = info.yearfirst 348 res = self._result() --> 349 l = _timelex.split(timestr) 350 try: 351 C:\Python27\lib\site-packages\dateutil\parser.pyc in split(cls, s) 141 142 def split(cls, s): --> 143 return list(cls(s)) 144 split = classmethod(split) 145 C:\Python27\lib\site-packages\dateutil\parser.pyc in next(self) 135 136 def next(self): --> 137 token = self.get_token() 138 if token is None: 139 raise StopIteration C:\Python27\lib\site-packages\dateutil\parser.pyc in get_token(self) 66 nextchar = self.charstack.pop(0) 67 else: ---> 68 nextchar = self.instream.read(1) 69 while nextchar == '\x00': 70 nextchar = self.instream.read(1) AttributeError: 'Series' object has no attribute 'read'
df['date'].apply(dateutil.parser.parse)
gives me the error AttributeError: 'datetime.date' object has no attribute 'read'
df['date'].truncate(after='2013/04/01')
gives the error TypeError: can't compare datetime.datetime to long
df['date'].dtype
returns dtype('O')
. Is it already a datetime
object?
Pandas is aware of the object datetime but when you use some of the import functions it is taken as a string. So what you need to do is make sure the column is set as the datetime type not as a string. Then you can make your query.
df['date'] = pd.to_datetime(df['date']) df_masked = df[(df['date'] > datetime.date(2012,4,1)) & (df['date'] < datetime.date(2012,4,4))]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With