I have a multidimensional array (result
) that should be filled by some nested loops. Function fun()
is a complex and time-consuming function. I want to fill my array elements in a parallel manner, so I can use all my system's processing power.
Here's the code:
import numpy as np
def fun(x, y, z):
# time-consuming computation...
# ...
return output
dim1 = 10
dim2 = 20
dim3 = 30
result = np.zeros([dim1, dim2, dim3])
for i in xrange(dim1):
for j in xrange(dim2):
for k in xrange(dim3):
result[i, j, k] = fun(i, j, k)
My question is that "Can I parallelize this code or not? if yes, How?"
I'm using Windows 10 64-bit and python 2.7.
Please provide your solution by changing my code if you can. Thanks!
Here is a version of code that runs fun(i, j, k)
in parallel for differend k
indices. This is done by running fun
in different processes by using https://docs.python.org/2/library/multiprocessing.html
import numpy as np
from multiprocessing import Pool
def fun(x, y, z):
# time-consuming computation...
# ...
return output
def fun_wrapper(indices):
fun(*indices)
if __name__ == '__main__':
dim1 = 10
dim2 = 20
dim3 = 30
result = np.zeros([dim1, dim2, dim3])
pool = Pool(processes=8)
for i in xrange(dim1):
for j in xrange(dim2):
result[i, j] = pool.map(fun_wrapper, [(i, j, k) for k in xrange(dim3)])
This is not the most elegant solution but you may start with it. And you will get a speed up only if fun
contains time-consuming computation
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With