I have been trying to normalize
a very nested json file I will later analyze. What I am struggling with is how to go more than one level deep to normalize.
I went through the pandas.io.json.json_normalize documentation, since it does exactly what I want it to do.
I have been able to normalize part of it and now understand how dictionaries work, but I am still not there.
With below code I am able to get only the first level.
import json
import pandas as pd
from pandas.io.json import json_normalize
with open('authors_sample.json') as f:
d = json.load(f)
raw = json_normalize(d['hits']['hits'])
authors = json_normalize(data = d['hits']['hits'],
record_path = '_source',
meta = ['_id', ['_source', 'journal'], ['_source', 'title'],
['_source', 'normalized_venue_name']
])
I am trying to 'dig' into the 'authors' dictionary with below code, but the record_path = ['_source', 'authors']
throws me TypeError: string indices must be integers
. As far as I understand json_normalize
the logic should be good, but I still don't quite understand how to dive into a json with dict
vs list
.
I even went through this simple example.
authors = json_normalize(data = d['hits']['hits'],
record_path = ['_source', 'authors'],
meta = ['_id', ['_source', 'journal'], ['_source', 'title'],
['_source', 'normalized_venue_name']
])
Below is a chunk of the json file (5 records).
{u'_shards': {u'failed': 0, u'successful': 5, u'total': 5},
u'hits': {u'hits': [{u'_id': u'7CB3F2AD',
u'_index': u'scibase_listings',
u'_score': 1.0,
u'_source': {u'authors': None,
u'deleted': 0,
u'description': None,
u'doi': u'',
u'is_valid': 1,
u'issue': None,
u'journal': u'Physical Review Letters',
u'link': None,
u'meta_description': None,
u'meta_keywords': None,
u'normalized_venue_name': u'phys rev lett',
u'pages': None,
u'parent_keywords': [u'Chromatography',
u'Quantum mechanics',
u'Particle physics',
u'Quantum field theory',
u'Analytical chemistry',
u'Quantum chromodynamics',
u'Physics',
u'Mass spectrometry',
u'Chemistry'],
u'pub_date': u'1987-03-02 00:00:00',
u'pubtype': None,
u'rating_avg_weighted': 0,
u'rating_clarity': 0.0,
u'rating_clarity_weighted': 0.0,
u'rating_innovation': 0.0,
u'rating_innovation_weighted': 0.0,
u'rating_num_weighted': 0,
u'rating_reproducability': 0,
u'rating_reproducibility_weighted': 0.0,
u'rating_versatility': 0.0,
u'rating_versatility_weighted': 0.0,
u'review_count': 0,
u'tag': [u'mass spectra', u'elementary particles', u'bound states'],
u'title': u'Evidence for a new meson: A quasinuclear NN-bar bound state',
u'userAvg': 0.0,
u'user_id': None,
u'venue_name': u'Physical Review Letters',
u'views_count': 0,
u'volume': None},
u'_type': u'listing'},
{u'_id': u'7AF8EBC3',
u'_index': u'scibase_listings',
u'_score': 1.0,
u'_source': {u'authors': [{u'affiliations': [u'Punjabi University'],
u'author_id': u'780E3459',
u'author_name': u'munish puri'},
{u'affiliations': [u'Punjabi University'],
u'author_id': u'48D92C79',
u'author_name': u'rajesh dhaliwal'},
{u'affiliations': [u'Punjabi University'],
u'author_id': u'7D9BD37C',
u'author_name': u'r s singh'}],
u'deleted': 0,
u'description': None,
u'doi': u'',
u'is_valid': 1,
u'issue': None,
u'journal': u'Journal of Industrial Microbiology & Biotechnology',
u'link': None,
u'meta_description': None,
u'meta_keywords': None,
u'normalized_venue_name': u'j ind microbiol biotechnol',
u'pages': None,
u'parent_keywords': [u'Nuclear medicine',
u'Psychology',
u'Hydrology',
u'Chromatography',
u'X-ray crystallography',
u'Nuclear fusion',
u'Medicine',
u'Fluid dynamics',
u'Thermodynamics',
u'Physics',
u'Gas chromatography',
u'Radiobiology',
u'Engineering',
u'Organic chemistry',
u'High-performance liquid chromatography',
u'Chemistry',
u'Organic synthesis',
u'Psychotherapist'],
u'pub_date': u'2008-04-04 00:00:00',
u'pubtype': None,
u'rating_avg_weighted': 0,
u'rating_clarity': 0.0,
u'rating_clarity_weighted': 0.0,
u'rating_innovation': 0.0,
u'rating_innovation_weighted': 0.0,
u'rating_num_weighted': 0,
u'rating_reproducability': 0,
u'rating_reproducibility_weighted': 0.0,
u'rating_versatility': 0.0,
u'rating_versatility_weighted': 0.0,
u'review_count': 0,
u'tag': [u'flow rate',
u'operant conditioning',
u'packed bed reactor',
u'immobilized enzyme',
u'specific activity'],
u'title': u'Development of a stable continuous flow immobilized enzyme reactor for the hydrolysis of inulin',
u'userAvg': 0.0,
u'user_id': None,
u'venue_name': u'Journal of Industrial Microbiology & Biotechnology',
u'views_count': 0,
u'volume': None},
u'_type': u'listing'},
{u'_id': u'7521A721',
u'_index': u'scibase_listings',
u'_score': 1.0,
u'_source': {u'authors': [{u'author_id': u'7FF872BC',
u'author_name': u'barbara eileen ryan'}],
u'deleted': 0,
u'description': None,
u'doi': u'',
u'is_valid': 1,
u'issue': None,
u'journal': u'The American Historical Review',
u'link': None,
u'meta_description': None,
u'meta_keywords': None,
u'normalized_venue_name': u'american historical review',
u'pages': None,
u'parent_keywords': [u'Social science',
u'Politics',
u'Sociology',
u'Law'],
u'pub_date': u'1992-01-01 00:00:00',
u'pubtype': None,
u'rating_avg_weighted': 0,
u'rating_clarity': 0.0,
u'rating_clarity_weighted': 0.0,
u'rating_innovation': 0.0,
u'rating_innovation_weighted': 0.0,
u'rating_num_weighted': 0,
u'rating_reproducability': 0,
u'rating_reproducibility_weighted': 0.0,
u'rating_versatility': 0.0,
u'rating_versatility_weighted': 0.0,
u'review_count': 0,
u'tag': [u'social movements'],
u'title': u"Feminism and the women's movement : dynamics of change in social movement ideology, and activism",
u'userAvg': 0.0,
u'user_id': None,
u'venue_name': u'The American Historical Review',
u'views_count': 0,
u'volume': None},
u'_type': u'listing'},
{u'_id': u'7DAEB9A4',
u'_index': u'scibase_listings',
u'_score': 1.0,
u'_source': {u'authors': [{u'author_id': u'0299B8E9',
u'author_name': u'fraser j harbutt'}],
u'deleted': 0,
u'description': None,
u'doi': u'',
u'is_valid': 1,
u'issue': None,
u'journal': u'The American Historical Review',
u'link': None,
u'meta_description': None,
u'meta_keywords': None,
u'normalized_venue_name': u'american historical review',
u'pages': None,
u'parent_keywords': [u'Superconductivity',
u'Nuclear fusion',
u'Geology',
u'Chemistry',
u'Metallurgy'],
u'pub_date': u'1988-01-01 00:00:00',
u'pubtype': None,
u'rating_avg_weighted': 0,
u'rating_clarity': 0.0,
u'rating_clarity_weighted': 0.0,
u'rating_innovation': 0.0,
u'rating_innovation_weighted': 0.0,
u'rating_num_weighted': 0,
u'rating_reproducability': 0,
u'rating_reproducibility_weighted': 0.0,
u'rating_versatility': 0.0,
u'rating_versatility_weighted': 0.0,
u'review_count': 0,
u'tag': [u'iron'],
u'title': u'The iron curtain : Churchill, America, and the origins of the Cold War',
u'userAvg': 0.0,
u'user_id': None,
u'venue_name': u'The American Historical Review',
u'views_count': 0,
u'volume': None},
u'_type': u'listing'},
{u'_id': u'7B3236C5',
u'_index': u'scibase_listings',
u'_score': 1.0,
u'_source': {u'authors': [{u'author_id': u'7DAB7B72',
u'author_name': u'richard m freeland'}],
u'deleted': 0,
u'description': None,
u'doi': u'',
u'is_valid': 1,
u'issue': None,
u'journal': u'The American Historical Review',
u'link': None,
u'meta_description': None,
u'meta_keywords': None,
u'normalized_venue_name': u'american historical review',
u'pages': None,
u'parent_keywords': [u'Political Science', u'Economics'],
u'pub_date': u'1985-01-01 00:00:00',
u'pubtype': None,
u'rating_avg_weighted': 0,
u'rating_clarity': 0.0,
u'rating_clarity_weighted': 0.0,
u'rating_innovation': 0.0,
u'rating_innovation_weighted': 0.0,
u'rating_num_weighted': 0,
u'rating_reproducability': 0,
u'rating_reproducibility_weighted': 0.0,
u'rating_versatility': 0.0,
u'rating_versatility_weighted': 0.0,
u'review_count': 0,
u'tag': [u'foreign policy'],
u'title': u'The Truman Doctrine and the origins of McCarthyism : foreign policy, domestic politics, and internal security, 1946-1948',
u'userAvg': 0.0,
u'user_id': None,
u'venue_name': u'The American Historical Review',
u'views_count': 0,
u'volume': None},
u'_type': u'listing'}],
u'max_score': 1.0,
u'total': 36429433},
u'timed_out': False,
u'took': 170}
In the pandas example (below) what do the brackets mean? Is there a logic to be followed to go deeper with the []. [...]
result = json_normalize(data, 'counties', ['state', 'shortname', ['info', 'governor']])
Each string or list of strings in the ['state', 'shortname', ['info', 'governor']]
value is a path to an element to include, in addition to the selected rows. The second argument json_normalize()
argument (record_path
, set to 'counties'
in the documentation example) tells the function how to select elements from the input data structure that make up the rows in the output, and the meta
paths adds further metadata that will be included with each of the rows. Think of these as table joins in a database, if you will.
The input for the US States documentation example has two dictionaries in a list, and both of these dictionaries have a counties
key that references another list of dicts:
>>> data = [{'state': 'Florida',
... 'shortname': 'FL',
... 'info': {'governor': 'Rick Scott'},
... 'counties': [{'name': 'Dade', 'population': 12345},
... {'name': 'Broward', 'population': 40000},
... {'name': 'Palm Beach', 'population': 60000}]},
... {'state': 'Ohio',
... 'shortname': 'OH',
... 'info': {'governor': 'John Kasich'},
... 'counties': [{'name': 'Summit', 'population': 1234},
... {'name': 'Cuyahoga', 'population': 1337}]}]
>>> pprint(data[0]['counties'])
[{'name': 'Dade', 'population': 12345},
{'name': 'Broward', 'population': 40000},
{'name': 'Palm Beach', 'population': 60000}]
>>> pprint(data[1]['counties'])
[{'name': 'Summit', 'population': 1234},
{'name': 'Cuyahoga', 'population': 1337}]
Between them there are 5 rows of data to use in the output:
>>> json_normalize(data, 'counties')
name population
0 Dade 12345
1 Broward 40000
2 Palm Beach 60000
3 Summit 1234
4 Cuyahoga 1337
The meta
argument then names some elements that live next to those counties
lists, and those are then merged in separately. The values from the first data[0]
dictionary for those meta
elements are ('Florida', 'FL', 'Rick Scott')
, respectively, and for data[1]
the values are ('Ohio', 'OH', 'John Kasich')
, so you see those values attached to the counties
rows that came from the same top-level dictionary, repeated 3 and 2 times respectively:
>>> data[0]['state'], data[0]['shortname'], data[0]['info']['governor']
('Florida', 'FL', 'Rick Scott')
>>> data[1]['state'], data[1]['shortname'], data[1]['info']['governor']
('Ohio', 'OH', 'John Kasich')
>>> json_normalize(data, 'counties', ['state', 'shortname', ['info', 'governor']])
name population state shortname info.governor
0 Dade 12345 Florida FL Rick Scott
1 Broward 40000 Florida FL Rick Scott
2 Palm Beach 60000 Florida FL Rick Scott
3 Summit 1234 Ohio OH John Kasich
4 Cuyahoga 1337 Ohio OH John Kasich
So, if you pass in a list for the meta
argument, then each element in the list is a separate path, and each of those separate paths identifies data to add to the rows in the output.
In your example JSON, there are only a few nested lists to elevate with the first argument, like 'counties'
did in the example. The only example in that datastructure is the nested 'authors'
key; you'd have to extract each ['_source', 'authors']
path, after which you can add other keys from the parent object to augment those rows.
The second meta
argument then pulls in the _id
key from the outermost objects, followed by the nested ['_source', 'title']
and ['_source', 'journal']
nested paths.
The record_path
argument takes the authors
lists as the starting point, these look like:
>>> d['hits']['hits'][0]['_source']['authors'] # this value is None, and is skipped
>>> d['hits']['hits'][1]['_source']['authors']
[{'affiliations': ['Punjabi University'],
'author_id': '780E3459',
'author_name': 'munish puri'},
{'affiliations': ['Punjabi University'],
'author_id': '48D92C79',
'author_name': 'rajesh dhaliwal'},
{'affiliations': ['Punjabi University'],
'author_id': '7D9BD37C',
'author_name': 'r s singh'}]
>>> d['hits']['hits'][2]['_source']['authors']
[{'author_id': '7FF872BC',
'author_name': 'barbara eileen ryan'}]
>>> # etc.
and so gives you the following rows:
>>> json_normalize(d['hits']['hits'], ['_source', 'authors'])
affiliations author_id author_name
0 [Punjabi University] 780E3459 munish puri
1 [Punjabi University] 48D92C79 rajesh dhaliwal
2 [Punjabi University] 7D9BD37C r s singh
3 NaN 7FF872BC barbara eileen ryan
4 NaN 0299B8E9 fraser j harbutt
5 NaN 7DAB7B72 richard m freeland
and then we can use the third meta
argument to add more columns like _id
, _source.title
and _source.journal
, using ['_id', ['_source', 'journal'], ['_source', 'title']]
:
>>> json_normalize(
... data['hits']['hits'],
... ['_source', 'authors'],
... ['_id', ['_source', 'journal'], ['_source', 'title']]
... )
affiliations author_id author_name _id \
0 [Punjabi University] 780E3459 munish puri 7AF8EBC3
1 [Punjabi University] 48D92C79 rajesh dhaliwal 7AF8EBC3
2 [Punjabi University] 7D9BD37C r s singh 7AF8EBC3
3 NaN 7FF872BC barbara eileen ryan 7521A721
4 NaN 0299B8E9 fraser j harbutt 7DAEB9A4
5 NaN 7DAB7B72 richard m freeland 7B3236C5
_source.journal
0 Journal of Industrial Microbiology & Biotechno...
1 Journal of Industrial Microbiology & Biotechno...
2 Journal of Industrial Microbiology & Biotechno...
3 The American Historical Review
4 The American Historical Review
5 The American Historical Review
_source.title \
0 Development of a stable continuous flow immobi...
1 Development of a stable continuous flow immobi...
2 Development of a stable continuous flow immobi...
3 Feminism and the women's movement : dynamics o...
4 The iron curtain : Churchill, America, and the...
5 The Truman Doctrine and the origins of McCarth...
You can also have a look at the library flatten_json, which does not require you to write column hierarchies as in json_normalize:
from flatten_json import flatten
data = d['hits']['hits']
dict_flattened = (flatten(record, '.') for record in data)
df = pd.DataFrame(dict_flattened)
print(df)
See https://github.com/amirziai/flatten.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With