I want to convert my df to an excel sheet, but also want to add a header column to categorize all the columns.
For reproduction:
import pandas as pd
# Create a Pandas dataframe from some data.
df = pd.DataFrame({'Data': [10, 20, 30, 20, 15, 30, 45]})
# Create a Pandas Excel writer using XlsxWriter as the engine.
writer = pd.ExcelWriter('pandas_simple.xlsx', engine='xlsxwriter')
# Convert the dataframe to an XlsxWriter Excel object.
df.to_excel(writer, sheet_name='Sheet1')
# Close the Pandas Excel writer and output the Excel file.
writer.save()
You can add header to pandas dataframe using the df. colums = ['Column_Name1', 'column_Name_2'] method. You can use the below code snippet to set column headers to the dataframe.
You can create MultiIndex
:
df = pd.DataFrame({
'A':list('abcdef'),
'B':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],
'F':list('aaabbb')
})
Specified new name of level with start and end column name:
L = [('OBS','A','C'), ('FIN', 'D','F')]
And then in list comprehension create tuples
for MultiIndex.from_tuples
:
cols = [(new, c) for new, start, end in L for c in df.loc[:, start:end].columns]
print (cols)
[('OBS', 'A'), ('OBS', 'B'), ('OBS', 'C'), ('FIN', 'D'), ('FIN', 'E'), ('FIN', 'F')]
df.columns = pd.MultiIndex.from_tuples(cols)
print (df)
OBS FIN
A B C D E F
0 a 4 7 1 5 a
1 b 5 8 3 3 a
2 c 4 9 5 6 a
3 d 5 4 7 9 b
4 e 5 2 1 2 b
5 f 4 3 0 4 b
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With