I used the transfer learning approach to train a model and saved the best-detected weights. In another script, I tried to use the saved weights for prediction. But I am getting errors as follows. I have used ResNet for finetuning the network and have 4 classes.
RuntimeError: Error(s) in loading state_dict for ResNet:
size mismatch for fc.bias: copying a param of torch.Size([1000]) from
checkpoint, where the shape is torch.Size([4]) in current model.
size mismatch for fc.weight: copying a param of torch.Size([1000,
512]) from checkpoint, where the shape is torch.Size([4, 512]) in
current model.
I am using the following code for prediction of output:
checkpoint = torch.load("./models/custom_model13.model")
model = resnet18(pretrained=True)
model.load_state_dict(checkpoint)
model.eval()
def predict_image(image_path):
transformation = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image_tensor = transformation(image).float()
image_tensor = image_tensor.unsqueeze_(0)
if torch.cuda.is_available():
image_tensor.cuda()
input = Variable(image_tensor)
output = model(input)
index = output.data.numpy().argmax()
return index
if __name__ == "main":
imagefile = "image.png"
imagepath = os.path.join(os.getcwd(),imagefile)
prediction = predict_image(imagepath)
print("Predicted Class: ",prediction)
And the following code to train and save the model:
Data_dir = 'Dataset'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
shuffle=True, num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print (device)
def save_models(epochs, model):
torch.save(model.state_dict(), "custom_model{}.model".format(epochs))
print("Checkpoint Saved")
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'train' and epoch_acc > best_acc:
save_models(epoch,model)
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model
def visualize_model(model, num_images=6):
was_training = model.training
model.eval()
images_so_far = 0
fig = plt.figure()
with torch.no_grad():
for i, (inputs, labels) in enumerate(dataloaders['val']):
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
for j in range(inputs.size()[0]):
images_so_far += 1
ax = plt.subplot(num_images//2, 2, images_so_far)
ax.axis('off')
ax.set_title('predicted: {}'.format(class_names[preds[j]]))
imshow(inputs.cpu().data[j])
if images_so_far == num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 4)
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model_ft = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=25)
You trained a model derived from resnet18
in this way:
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 4)
That is, you changed the last nn.Linear
layer to output 4 dim prediction instead of the default 1000.
When you try and load the model for prediction, your code is:
model = resnet18(pretrained=True)
model.load_state_dict(checkpoint)
You did not apply the same change of the last nn.Linear
layer to model
therefore the checkpoint
you are trying to load does not fit.
(1) Apply the same change before loading the checkpoint
:
model = resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, 4) # make the change
model.load_state_dict(checkpoint) # load
(2) Even better, use num_classes
argument to construct resnet
with the desired number of outputs to begin with:
model = resnet18(pretrained=True, num_classes=4)
model.load_state_dict(checkpoint) # load
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With