I have a multiIndex pandas dataframe, where the first level index is a group and the second level index is time. What I want to do is, within each group, to resample to daily frequency taking the average of intraday observations.
import pandas as pd
import numpy as np
data = pd.concat([pd.DataFrame([['A']*72, list(pd.date_range('1/1/2011', periods=72, freq='H')), list(np.random.rand(72))], index = ['Group', 'Time', 'Value']).T,
pd.DataFrame([['B']*72, list(pd.date_range('1/1/2011', periods=72, freq='H')), list(np.random.rand(72))], index = ['Group', 'Time', 'Value']).T,
pd.DataFrame([['C']*72, list(pd.date_range('1/1/2011', periods=72, freq='H')), list(np.random.rand(72))], index = ['Group', 'Time', 'Value']).T],
axis = 0).set_index(['Group', 'Time'])
This is what I tried so far:
daily_counts = data.groupby(pd.TimeGrouper('D'), level = ['Time']).mean()
But I get the following error:
TypeError: Only valid with DatetimeIndex, TimedeltaIndex or PeriodIndex, but got an instance of 'MultiIndex'
Any idea how to solve this?
You need first cast column to float
and then use Grouper
:
data['Value'] = data['Value'].astype(float)
daily_counts = data.groupby([pd.Grouper(freq='D', level='Time'),
pd.Grouper(level='Group')])['Value'].mean()
print (daily_counts)
Time Group
2011-01-01 A 0.548358
B 0.612878
C 0.544822
2011-01-02 A 0.529880
B 0.437062
C 0.388626
2011-01-03 A 0.563854
B 0.479299
C 0.557190
Name: Value, dtype: float64
Another solution:
data = data.reset_index(level='Group')
print (data.groupby('Group').resample('D')['Value'].mean())
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With