I have a dataframe merged_df_energy
:
+------------------------+------------------------+------------------------+--------------+
| ACT_TIME_AERATEUR_1_F1 | ACT_TIME_AERATEUR_1_F3 | ACT_TIME_AERATEUR_1_F5 | class_energy |
+------------------------+------------------------+------------------------+--------------+
| 63.333333 | 63.333333 | 63.333333 | low |
| 0 | 0 | 0 | high |
| 45.67 | 0 | 55.94 | high |
| 0 | 0 | 23.99 | low |
| 0 | 20 | 23.99 | medium |
+------------------------+------------------------+------------------------+--------------+
I would like to create for each ACT_TIME_AERATEUR_1_Fx
(ACT_TIME_AERATEUR_1_F1
, ACT_TIME_AERATEUR_1_F3
and ACT_TIME_AERATEUR_1_F5
) a dataframe which contains these columns: class_energy
and sum_time
For example for the dataframe corresponding to ACT_TIME_AERATEUR_1_F1
:
+-----------------+-----------+
| class_energy | sum_time |
+-----------------+-----------+
| low | 63.333333 |
| medium | 0 |
| high | 45.67 |
+-----------------+-----------+
I thing to do I should use the group by like this:
data.groupby(by=['class_energy'])['sum_time'].sum()
How can I do this?
You can add all columns to []
for aggregating:
print (df.groupby(by=['class_energy'])['ACT_TIME_AERATEUR_1_F1', 'ACT_TIME_AERATEUR_1_F3','ACT_TIME_AERATEUR_1_F5'].sum())
ACT_TIME_AERATEUR_1_F1 ACT_TIME_AERATEUR_1_F3 \
class_energy
high 45.670000 0.000000
low 63.333333 63.333333
medium 0.000000 20.000000
ACT_TIME_AERATEUR_1_F5
class_energy
high 55.940000
low 87.323333
medium 23.990000
You can use also parameter as_index=False
:
print (df.groupby(by=['class_energy'], as_index=False)['ACT_TIME_AERATEUR_1_F1', 'ACT_TIME_AERATEUR_1_F3','ACT_TIME_AERATEUR_1_F5'].sum())
class_energy ACT_TIME_AERATEUR_1_F1 ACT_TIME_AERATEUR_1_F3 \
0 high 45.670000 0.000000
1 low 63.333333 63.333333
2 medium 0.000000 20.000000
ACT_TIME_AERATEUR_1_F5
0 55.940000
1 87.323333
2 23.990000
If need aggregate only first 3
columns:
print (df.groupby(by=['class_energy'], as_index=False)[df.columns[:3]].sum())
class_energy ACT_TIME_AERATEUR_1_F1 ACT_TIME_AERATEUR_1_F3 \
0 high 45.670000 0.000000
1 low 63.333333 63.333333
2 medium 0.000000 20.000000
ACT_TIME_AERATEUR_1_F5
0 55.940000
1 87.323333
2 23.990000
...or all columns without last:
print (df.groupby(by=['class_energy'], as_index=False)[df.columns[:-1]].sum())
class_energy ACT_TIME_AERATEUR_1_F1 ACT_TIME_AERATEUR_1_F3 \
0 high 45.670000 0.000000
1 low 63.333333 63.333333
2 medium 0.000000 20.000000
ACT_TIME_AERATEUR_1_F5
0 55.940000
1 87.323333
2 23.990000
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With