I am formatting a pandas dataframe with styler to highlight columns and format numbers. I also want to apply multi-index for more clear, pleasant and easy to read. Since I apply Styler to subset of columns it does not work work with the multi-index.
Example:
arrays = [np.hstack([['One']*2, ['Two']*2]) , ['A', 'B', 'C', 'D']]
columns = pd.MultiIndex.from_arrays(arrays)
data = pd.DataFrame(np.random.randn(5, 4), columns=list('ABCD'))
data.columns = columns
import seaborn as sns
cm = sns.light_palette("green", as_cmap=True)
data.style.background_gradient(cmap=cm, subset=['A'])
Is there a way to subset the columns so the styler can work. According to the below sources this is implemented but there is not examples so it is hard to me to understand how to apply it: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.formats.style.Styler.html https://github.com/pandas-dev/pandas/issues/11655
thank you !
One way to conditionally format your Pandas DataFrame is to highlight cells which meet certain conditions. To do so, we can write a simple function and pass that function into the Styler object using . apply() or .
A multi-index (also known as hierarchical index) dataframe uses more than one column as the index of the dataframe. A multi-index dataframe allows you to store your data in multi-dimension format, and opens up a lot of exciting to represent your data.
I think you can use pd.IndexSlice[...] method:
data.style.background_gradient(cmap=cm, subset=pd.IndexSlice[:, pd.IndexSlice[:, 'A']])
Demo:
In [5]: data.loc[pd.IndexSlice[:, pd.IndexSlice[:, 'A']]]
Out[5]:
One
A
0 -0.808483
1 0.009371
2 0.977138
3 -0.875554
4 -0.052424
In [6]: data
Out[6]:
One Two
A B C D
0 -0.808483 -2.280683 0.576145 0.649688
1 0.009371 0.721510 1.013764 -0.157493
2 0.977138 1.441392 1.718618 -0.320826
3 -0.875554 -1.060507 1.457075 0.570195
4 -0.052424 -0.742842 -0.203830 -1.202091
in Jupyter:
Here, is another way:
data.style.background_gradient(cmap=cm, subset=data.columns.get_loc_level('A', level=1)[0])
Output:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With