I'm trying to replace the last row in a group by with the value of another column only if it is null. I am able to do both of these pieces separately but can't seem to combine them. Anyone have any ideas?
These are the separate pieces:
# replace any NaN values with values from 'target'
df.loc[df['target'].isnull(),'target'] = df['value']
# replace last value in groupby with value from 'target'
df.loc[df.groupby('id').tail(1).index,'target'] = df['value']
Original Data:
date id value target
0 2020-08-07 id01 0.100775 NaN
1 2020-08-08 id01 0.215885 0.215885
2 2020-08-09 id01 0.012154 0.012154
3 2020-08-10 id01 0.374503 NaN
4 2020-08-07 id02 0.369707 0.369707
5 2020-08-08 id02 0.676743 0.676743
6 2020-08-09 id02 0.659521 0.659521
7 2020-08-10 id02 0.799071 NaN
Replace 'target' column with last row in groupby('id') with what is in 'value':
date id value target
0 2020-08-07 id01 0.100775 NaN
1 2020-08-08 id01 0.215885 0.215885
2 2020-08-09 id01 0.012154 0.012154
3 2020-08-10 id01 0.374503 0.374503
4 2020-08-07 id02 0.369707 0.369707
5 2020-08-08 id02 0.676743 0.676743
6 2020-08-09 id02 0.659521 0.659521
7 2020-08-10 id02 0.799071 0.799071
This should do. Added the tail
variable just for easier to read syntaxis:
tail = df.groupby('id').tail(1)
df.loc[tail.index,'target'] = df.loc[tail.index]['target'].fillna(tail.value)
Output:
0 idx date id value target
1 0 2020-08-07 id01 0.100775 NaN
2 1 2020-08-08 id01 0.215885 0.215885
3 2 2020-08-09 id01 0.012154 0.012154
4 3 2020-08-10 id01 0.374503 0.374503
5 4 2020-08-07 id02 0.369707 0.369707
6 5 2020-08-08 id02 0.676743 0.676743
7 6 2020-08-09 id02 0.659521 0.659521
8 7 2020-08-10 id02 0.799071 0.799071
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With