I have the following dataframe which is a small part of a bigger one:
acc_num trans_cdi
0 1 c
1 1 d
3 3 d
4 3 c
5 3 d
6 3 d
I'd like to delete all rows where the last items are "d". So my desired dataframe would look like this:
acc_num trans_cdi
0 1 c
3 3 d
4 3 c
So the point is, that a group shouldn't have "d" as the last item.
There is a code that deletes the last row in the groups where the last item is "d". But in this case, I have to run the code twice to delete all last "d"-s in group 3 for example.
clean_3 = clean_2[clean_2.groupby('account_num')['trans_cdi'].transform(lambda x: (x.iloc[-1] != "d") | (x.index != x.index[-1]))]
Is there a better solution to this problem?
We can use idxmax
here with reversing the data [::-1]
and then get the index:
grps = df['trans_cdi'].ne('d').groupby(df['acc_num'], group_keys=False)
idx = grps.apply(lambda x: x.loc[:x[::-1].idxmax()]).index
df.loc[idx]
acc_num trans_cdi
0 1 c
3 3 d
4 3 c
Testing on consecutive value
acc_num trans_cdi
0 1 c
1 1 d <--- d between two c, so we need to keep
2 1 c
3 1 d <--- row to be dropped
4 3 d
5 3 c
6 3 d
7 3 d
grps = df['trans_cdi'].ne('d').groupby(df['acc_num'], group_keys=False)
idx = grps.apply(lambda x: x.loc[:x[::-1].idxmax()]).index
df.loc[idx]
acc_num trans_cdi
0 1 c
1 1 d
2 1 c
4 3 d
5 3 c
Still gives correct result.
You can try this not so pandorable solution.
def r(x):
c = 0
for v in x['trans_cdi'].iloc[::-1]:
if v == 'd':
c = c+1
else:
break
return x.iloc[:-c]
df.groupby('acc_num', group_keys=False).apply(r)
acc_num trans_cdi
0 1 c
3 3 d
4 3 c
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With