In my dataset, I have a date column in which the data is of mixed format.
YYYY
(e.g. 2009
)MMM-YY
(e.g. Jan-08
)MM/DD/YYYY
(e.g. 01/15/2006
)How might I remove the entries that do not follow the format MM/DD/YYYY
? I'm not quite sure where to start here.
Below, I have provided the .head()
of the data as a dict
.
{'Collection Date': {0: '2001',
1: '2002',
2: '2006',
3: '2/19/2006',
4: '2/28/2006'},
'Complete Genome': {0: 'No', 1: 'No', 2: 'No', 3: 'No', 4: 'No'},
'Country': {0: 'Egypt', 1: 'Egypt', 2: 'Egypt', 3: 'Egypt', 4: 'Egypt'},
'Flu Season': {0: '-N/A-', 1: '-N/A-', 2: '-N/A-', 3: '-N/A-', 4: '-N/A-'},
'Host Species': {0: 'IRD:Human',
1: 'IRD:Human',
2: 'IRD:Bird/Avian',
3: 'IRD:Chicken/Avian',
4: 'IRD:Avian'},
'Protein Name': {0: 'NA', 1: 'NA', 2: 'NA', 3: 'NA', 4: 'HA'},
'Segment': {0: 6, 1: 6, 2: 6, 3: 6, 4: 4},
'Segment Length': {0: 1428, 1: 1449, 2: 1441, 3: 1363, 4: 1707},
'Sequence Accession': {0: 'AJ457944',
1: 'AJ457943',
2: 'GU050304',
3: 'GQ184251',
4: 'KF178948'},
'State/Province': {0: '-N/A-',
1: '-N/A-',
2: '-N/A-',
3: '-N/A-',
4: '-N/A-'},
'Strain Name': {0: '(A/Egypt/84/2001(H1N2))',
1: '(A/Egypt/96/2002(H1N2))',
2: 'A/avian/Egypt/920431/2006(H9N2)',
3: 'A/chicken/Egypt/06207-NLQP/2006(H5N1)',
4: 'A/chicken/Egypt/0626/2006'},
'Subtype': {0: 'H1N2', 1: 'H1N2', 2: 'H9N2', 3: 'H5N1', 4: 'H5N1'}}
Rather than applying Regular expression to match just MM/DD/YYYY, if your dates are only ever YYYY or MMM/YYYY or MM/DD/YYYY then you can exploit the fact that MM/DD/YYYY is a string of length 10:
In [8]:
import pandas as pd
pd.set_option('display.notebook_repr_html', False)
df = pd.DataFrame({'date':['01/03/1987', '2003', 'Jan-08', '31/01/2010']})
df
Out[8]:
date
0 01/03/1987
1 2003
2 Jan-08
3 31/01/2010
[4 rows x 1 columns]
In [9]:
df.ix[df.date.str.len() !=10]
Out[9]:
date
1 2003
2 Jan-08
[2 rows x 1 columns]
You can then just use to_datetime
:
In [16]:
df1 = df.ix[df.date.str.len() !=10]
df1
Out[16]:
date
1 2003
2 Jan-08
[2 rows x 1 columns]
In [17]:
df1.date = pd.to_datetime(df1.date)
df1
Out[17]:
date
1 2003-01-01 00:00:00
2 2014-01-08 00:00:00
[2 rows x 1 columns]
Just for completeness if you wanted to filter using regexp:
df.ix[~df.date.str.contains('(\d{2})[/](\d{2})[/](\d{4})')]
would work, note the ~
which is a negation
You can use pd.to_datetime
with the option errors='coerce'
to convert invalid dates to NaT
and then filter out NaT
s with dropna()
Example:
>>> df = pd.DataFrame({'date':['01/03/1987', '2003', 'Jan-08', '31/01/2010', '2/13/2016'],'value':range(5)})
>>> df
date value
0 01/03/1987 0
1 2003 1
2 Jan-08 2
3 31/01/2010 3
4 2/13/2016 4
Format: DD/MM/YYYY
>>> pd.to_datetime(df['date'], format='%d/%m/%Y', errors='coerce')
0 1987-03-01
1 NaT
2 NaT
3 2010-01-31
4 NaT
>>> df['date'] = pd.to_datetime(df['date'], format='%d/%m/%Y', errors='coerce')
>>> df.dropna()
date value
0 1987-03-01 0
3 2010-01-31 3
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With