Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Pandas read_csv, reading a boolean with missing values specified as an int

I am trying to import a csv into a pandas dataframe. I have boolean variables denoted with 1's and 0's, where missing values are identified with a -9. When I try to specify the dtype as boolean, I get a host of different errors, depending on what I try.

Sample data: test.csv

var1, var2
0,   0
0,   1
1,   3
-9,  0
0,   2
1,   7

I try to specify the dtype as I import:

dtype_dict = {'var1':'bool','var2':'int'}
nan_dict = {'var1':[-9]}
foo = pd.read_csv('test.csv',dtype=dtype_dict, na_values=nan_dict)

I get the following error:

ValueError: cannot safely convert passed user dtype of |b1 for int64 dtyped data in column 0

I have also tried specifying the true and false values,

foo = pd.read_csv('test.csv',dtype=dtype_dict,na_values=nan_dict,
                 true_values=[1],false_values=[0])

but then I get a different error:

Exception: Must be all encoded bytes

The source code for the error says something about catching the occasional none, but nones or nulls are exactly what I want.

like image 299
Reen Avatar asked Dec 23 '16 15:12

Reen


1 Answers

You can specify the converters parameter for the var1 column:

from io import StringIO
import numpy as np
import pandas as pd

pd.read_csv(StringIO("""var1, var2
0,   0
0,   1
1,   3
-9,  0
0,   2
1,   7"""), converters = {'var1': lambda x: bool(int(x)) if x != '-9' else np.nan})

enter image description here

like image 149
Psidom Avatar answered Sep 20 '22 05:09

Psidom