Given the following dataframe:
import pandas as pd
df = pd.DataFrame({
'a': [1,2,3,4,5],
'b': [5,4,3,3,4],
'c': [3,2,4,3,10],
'd': [3, 2, 1, 1, 1]
})
And the following list of parameters:
params = {'a': 2.5, 'b': 3.0, 'c': 1.3, 'd': 0.9}
Produce the following desired output:
a b c d output
0 1 5 3 3 24.1
1 2 4 2 2 21.4
2 3 3 4 1 22.6
3 4 3 3 1 23.8
4 5 4 10 1 38.4
I have been using this to produce the result:
df['output'] = [np.sum(params[col] * df.loc[idx, col] for col in df)
for idx in df.index]
However, this is a very slow approach and I'm thinking there has to be a better way using built-in pandas functionality.
I also thought of this:
# Line up the parameters
col_sort_key = list(df)
params_sorted = sorted(params.items(), key=lambda k: col_sort_key.index(k[0]))
# Repeat the parameters *n* number of times
values = [v for k, v in params_sorted]
values = np.array([values] * df.shape[0])
values
array([[ 2.5, 3. , 1.3, 0.9],
[ 2.5, 3. , 1.3, 0.9],
[ 2.5, 3. , 1.3, 0.9],
[ 2.5, 3. , 1.3, 0.9],
[ 2.5, 3. , 1.3, 0.9]])
# Multiply and add
product = df[col_sort_key].values * values
product
array([[ 2.5, 15. , 3.9, 2.7],
[ 5. , 12. , 2.6, 1.8],
[ 7.5, 9. , 5.2, 0.9],
[ 10. , 9. , 3.9, 0.9],
[ 12.5, 12. , 13. , 0.9]])
np.sum(product, axis=1)
array([ 24.1, 21.4, 22.6, 23.8, 38.4])
But that seems a bit convoluted! Any thoughts on a native pandas try?
You can use assign
+ mul
+ sum
:
df1 = df.assign(**params).mul(df).sum(1)
print (df1)
0 24.1
1 21.4
2 22.6
3 23.8
4 38.4
dtype: float64
And dot
+ Series
constructor:
df1 = df.dot(pd.Series(params))
print (df1)
0 24.1
1 21.4
2 22.6
3 23.8
4 38.4
dtype: float64
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With