Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Import CSV to database using sqlalchemy

I am using this example to upload a csv file into a sqlite database:

this is my code:

from numpy import genfromtxt
from time import time
from datetime import datetime
from sqlalchemy import Column, Integer, Float, Date, String, VARCHAR
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker

def Load_Data(file_name):
    data = genfromtxt(file_name, delimiter=',')# skiprows=1, converters={0: lambda s: str(s)})
    return data.tolist()

Base = declarative_base()

class cdb1(Base):
    #Tell SQLAlchemy what the table name is and if there's any table-specific arguments it should know about
    __tablename__ = 'cdb1'
    __table_args__ = {'sqlite_autoincrement': True}
    #tell SQLAlchemy the name of column and its attributes:
    id = Column(Integer, primary_key=True, nullable=False) 
    name = Column(VARCHAR(40))
    shack = Column(VARCHAR)
    db = Column(Integer)
    payments = Column(Integer)
    status = Column(VARCHAR)


if __name__ == "__main__":
    t = time()
    print 'creating database'

    #Create the database
    engine = create_engine('sqlite:///cdb.db')
    Base.metadata.create_all(engine)

    #Create the session
    session = sessionmaker()
    session.configure(bind=engine)
    s = session()

    try:
        file_name = 'client_db.csv'
        data = Load_Data(file_name)

        for i in data:
            record = cdb1(**{
                'name' : i[0],
                'shack' : i[1],
                'db' : i[2],
                'payments' : i[3],
                'status' : i[4]
            })
            s.add(record) #Add all the records

        s.commit() #Attempt to commit all the records
    except:
        s.rollback() #Rollback the changes on error
        print 'error in reading'
    finally:
        s.close() #Close the connection
    print "Time elapsed: " + str(time() - t) + " s." #0.091s

and this is the first few rows of the csv file:

Name,Shack,DB,Payments,Status
Loyiso Dwala,I156,13542,37,LightsOnly ON
Attwell Fayo,I157,13077,32,LightsON
David Mbhele,G25,13155,33,LightsON

The DB is created ok, but only some of the data is captured into the attributes: the 'payments' and 'db' column are populated correctly, but everything else comes out as NULL.

UPDATED CORRECT CODE (using pandas dataframe):

from numpy import genfromtxt
from time import time
from datetime import datetime
from sqlalchemy import Column, Integer, Float, Date, String, VARCHAR
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
import csv
import pandas as pd


#def Load_Data(file_name):
    #data = csv.reader(file_name, delimiter=',')# skiprows=1, converters={0: lambda s: str(s)})
    #return data.tolist()

Base = declarative_base()

class cdb1(Base):
    #Tell SQLAlchemy what the table name is and if there's any table-specific arguments it should know about
    __tablename__ = 'cdb1'
    __table_args__ = {'sqlite_autoincrement': True}
    #tell SQLAlchemy the name of column and its attributes:
    id = Column(Integer, primary_key=True, nullable=False) 
    Name = Column(VARCHAR(40))
    Shack = Column(VARCHAR)
    DB = Column(Integer)
    Payments = Column(Integer)
    Status = Column(VARCHAR)

engine = create_engine('sqlite:///cdb.db')
Base.metadata.create_all(engine)
file_name = 'client_db.csv'
df = pd.read_csv(file_name)
df.to_sql(con=engine, index_label='id', name=cdb1.__tablename__, if_exists='replace')
like image 524
warrenfitzhenry Avatar asked Apr 17 '17 14:04

warrenfitzhenry


People also ask

Is SQLAlchemy good for ETL?

One of the key aspects of any data science workflow is the sourcing, cleaning, and storing of raw data in a form that can be used upstream. This process is commonly referred to as “Extract-Transform-Load,” or ETL for short.

How do I convert a CSV file to a table in Python?

You can read a CSV file into a DataFrame using the read_csv() function (this function should be familiar to you, but you can run help(pd. read_csv) in the console to refresh your memory!). Then, you can call the . to_sql() method on the DataFrame to load it into a SQL table in a database.


1 Answers

Are you familiar with Pandas Dataframe?

Really simple to use (and debug)

pandas.read_csv(file_name)

In [5]: pandas.read_csv('/tmp/csvt.csv')
Out[5]: 
           Name Shack     DB  Payments         Status
0  Loyiso Dwala  I156  13542        37  LightsOnly ON
1  Attwell Fayo  I157  13077        32       LightsON
2  David Mbhele   G25  13155        33       LightsON

For inserting the DataFrames data into a table, you can simply use pandas.DataFrame.to_sql

So your main code will end up looking something like this:

engine = create_engine('sqlite:///cdb.db')
Base.metadata.create_all(engine)

file_name = 'client_db.csv'
df = pandas.read_csv(file_name)
df.to_sql(con=engine, index_label='id', name=cdb1.__tablename__, if_exists='replace')

You should read further in the documentation link I added, and set the function Parameters as suits your purpose (specially look at - if_exists, index, index_label, dtype)

like image 175
Brailo Avatar answered Oct 22 '22 02:10

Brailo