I am having some trouble working on grouped objects in pandas. Specifically, I want to be able to set the first row in a column to 0 while keeping other rows unchanged.
For example:
df = pd.DataFrame({'A': ['foo', 'bar', 'baz'] * 2,
'B': rand.randn(6),
'C': rand.rand(6) > .5})
gives me
A B C
0 foo 1.624345 False
1 bar -0.611756 True
2 baz -0.528172 False
3 foo -1.072969 True
4 bar 0.865408 False
5 baz -2.301539 True
and I group them by A and sort them by B:
f = lambda x: x.sort('B', ascending=True)
sort_df = df.groupby('A',sort=False).apply(f)
to get this:
A B C
A
foo 3 foo -1.072969 True
0 foo 1.624345 False
bar 1 bar -0.611756 True
4 bar 0.865408 False
baz 5 baz -2.301539 True
2 baz -0.528172 False
Now that I have the groups, I want to be able to set the first element in each group to 0. How do I do that?
Something like this would work, but I want a more optimized way of doing it:
for group in sort_df.groupby(level=0).groups:
sort_df.loc[(group,sort_df.loc[group].index[0]),'B']=0
Any help would be appreciated, thanks!
Here's the vectorized way to do this. Will be MUCH faster
In [26]: pd.set_option('max_rows',10)
Create a frame with a 2-level multi-index, sort by A (arbitrary here)
In [27]: df = DataFrame(dict(A = np.random.randint(0,100,size=N),B=np.random.randint(0,100,size=N),C=np.random.randn(N))).sort(columns=['A'])
In [28]: df
Out[28]:
A B C
61474 0 40 -0.731163
82386 0 18 -1.316136
63372 0 28 0.112819
49666 0 13 -0.649491
31631 0 89 -0.835208
... .. .. ...
42178 99 28 -0.029800
59529 99 31 -0.733588
13503 99 60 0.672754
20961 99 18 0.252714
31882 99 22 0.083340
[100000 rows x 3 columns]
Reset the index to capture the index value. Find the first values according to B
In [29]: grouped = df.reset_index().groupby('B').first()
In [30]: grouped
Out[30]:
index A C
B
0 26576 0 1.123605
1 38311 0 0.128966
2 45135 0 -0.039886
3 38434 0 -1.284028
4 82088 0 -0.747440
.. ... .. ...
95 82620 0 -1.197625
96 63278 0 -0.625400
97 23226 0 -0.497609
98 82520 0 -0.828773
99 35902 0 -0.199752
[100 rows x 3 columns]
This gives you an indexer into the frame.
In [31]: df.loc[grouped['index']] = 0
In [32]: df
Out[32]:
A B C
61474 0 0 0.000000
82386 0 0 0.000000
63372 0 0 0.000000
49666 0 0 0.000000
31631 0 0 0.000000
... .. .. ...
42178 99 28 -0.029800
59529 99 31 -0.733588
13503 99 60 0.672754
20961 99 18 0.252714
31882 99 22 0.083340
[100000 rows x 3 columns]
If you want
In [33]: df.sort_index()
Out[33]:
A B C
0 40 56 -1.223941
1 24 77 -0.039775
2 7 83 0.741013
3 48 38 -1.795053
4 62 15 -2.734968
... .. .. ...
99995 20 25 -0.286300
99996 27 21 -0.120430
99997 0 4 0.607524
99998 38 31 0.717069
99999 33 63 -0.226888
[100000 rows x 3 columns]
This method
In [34]: %timeit df.loc[grouped['index']] = 0
100 loops, best of 3: 7.33 ms per loop
Your original
In [37]: %timeit df.groupby('A',sort=False).apply(f)
10 loops, best of 3: 109 ms per loop
If you have a lot more groups this perf differnce will widen.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With