Given the following dataframe df:
app platform uuid minutes
0 1 0 a696ccf9-22cb-428b-adee-95c9a97a4581 67
1 2 0 8e17a2eb-f0ee-49ae-b8c2-c9f9926aa56d 1
2 2 1 40AD6CD1-4A7B-48DD-8815-1829C093A95C 13
3 1 0 26c1022a-7a8e-42a2-b7cc-bea6bffa7a6f 2
4 2 0 34271596-eebb-4423-b890-dc3761ed37ca 8
5 3 1 C57D0F52-B565-4322-85D2-C2798F7CA6FF 16
6 2 0 245501ec2e39cb782bab1fb02d7813b7 1
7 3 1 DE6E4714-5A3C-4C80-BD81-EAACB2364DF0 30
8 3 0 f88eb774-fdf3-4d1d-a91d-0b4ab95cf36e 10
9 2 0 9c08c860-7a6d-4810-a5c3-f3af2a3fcf66 470
10 3 1 19fdaedfd0dbdaf6a7a6b49619f11a19 3
11 3 1 AAF1CFF7-4564-4C79-B2D8-F0AAF9C9971B 58
12 2 0 4eb1024b-c293-42a4-95a2-31b20c3b524b 24
13 3 1 8E0B0BE3-8553-4F38-9837-6C907E01F84C 7
14 3 1 E8B2849C-F050-4DCD-B311-5D57015466AE 465
15 2 0 ec7fedb6-b118-424a-babe-b8ffad579685 266
16 1 0 7e302dcb-ceaf-406c-a9e5-66933d921064 184
17 2 0 f786528ded200c9f553dd3a5e9e9bb2d 10
18 3 1 1E291633-AF27-4DFB-8DA4-4A5B63F175CF 13
19 2 0 953a525c-97e0-4c2f-90e0-dfebde3ec20d 2408`
I'll group it:
y=df.groupby(['app','platform','uuid']).sum().reset_index().sort(['app','platform','minutes'],ascending=[1,1,0]).set_index(['app','platform','uuid'])
minutes
app platform uuid
1 0 7e302dcb-ceaf-406c-a9e5-66933d921064 184
a696ccf9-22cb-428b-adee-95c9a97a4581 67
26c1022a-7a8e-42a2-b7cc-bea6bffa7a6f 2
2 0 953a525c-97e0-4c2f-90e0-dfebde3ec20d 2408
9c08c860-7a6d-4810-a5c3-f3af2a3fcf66 470
ec7fedb6-b118-424a-babe-b8ffad579685 266
4eb1024b-c293-42a4-95a2-31b20c3b524b 24
f786528ded200c9f553dd3a5e9e9bb2d 10
34271596-eebb-4423-b890-dc3761ed37ca 8
245501ec2e39cb782bab1fb02d7813b7 1
8e17a2eb-f0ee-49ae-b8c2-c9f9926aa56d 1
1 40AD6CD1-4A7B-48DD-8815-1829C093A95C 13
3 0 f88eb774-fdf3-4d1d-a91d-0b4ab95cf36e 10
1 E8B2849C-F050-4DCD-B311-5D57015466AE 465
AAF1CFF7-4564-4C79-B2D8-F0AAF9C9971B 58
DE6E4714-5A3C-4C80-BD81-EAACB2364DF0 30
C57D0F52-B565-4322-85D2-C2798F7CA6FF 16
1E291633-AF27-4DFB-8DA4-4A5B63F175CF 13
8E0B0BE3-8553-4F38-9837-6C907E01F84C 7
19fdaedfd0dbdaf6a7a6b49619f11a19 3
So that I got its minutes per uuid in decrescent order.
Now, I will sum the cumulative minutes per app/platform/uuid:
y.groupby(level=[0,1]).cumsum()
app platform uuid
1 0 7e302dcb-ceaf-406c-a9e5-66933d921064 184
a696ccf9-22cb-428b-adee-95c9a97a4581 251
26c1022a-7a8e-42a2-b7cc-bea6bffa7a6f 253
2 0 953a525c-97e0-4c2f-90e0-dfebde3ec20d 2408
9c08c860-7a6d-4810-a5c3-f3af2a3fcf66 2878
ec7fedb6-b118-424a-babe-b8ffad579685 3144
4eb1024b-c293-42a4-95a2-31b20c3b524b 3168
f786528ded200c9f553dd3a5e9e9bb2d 3178
34271596-eebb-4423-b890-dc3761ed37ca 3186
245501ec2e39cb782bab1fb02d7813b7 3187
8e17a2eb-f0ee-49ae-b8c2-c9f9926aa56d 3188
1 40AD6CD1-4A7B-48DD-8815-1829C093A95C 13
3 0 f88eb774-fdf3-4d1d-a91d-0b4ab95cf36e 10
1 E8B2849C-F050-4DCD-B311-5D57015466AE 465
AAF1CFF7-4564-4C79-B2D8-F0AAF9C9971B 523
DE6E4714-5A3C-4C80-BD81-EAACB2364DF0 553
C57D0F52-B565-4322-85D2-C2798F7CA6FF 569
1E291633-AF27-4DFB-8DA4-4A5B63F175CF 582
8E0B0BE3-8553-4F38-9837-6C907E01F84C 589
19fdaedfd0dbdaf6a7a6b49619f11a19 592
My question is: how can I get the percent agains the total cumulative sum, per group, i.e, something like this:
app platform uuid
1 0 7e302dcb-ceaf-406c-a9e5-66933d921064 184 0.26
a696ccf9-22cb-428b-adee-95c9a97a4581 251 0.36
26c1022a-7a8e-42a2-b7cc-bea6bffa7a6f 253 0.36
...
...
...
It's not clear you came up with 0.26, 0.36 in your desired output - but assuming those are just dummy numbers, to get a running % of total for each group, you could do this:
y['cumsum'] = y.groupby(level=[0,1]).cumsum()
y['running_pct'] = y.groupby(level=[0,1])['cumsum'].transform(lambda x: x / x.iloc[-1])
Should give the right output.
In [398]: y['running_pct'].head()
Out[398]:
app platform uuid
1 0 7e302dcb-ceaf-406c-a9e5-66933d921064 0.727273
a696ccf9-22cb-428b-adee-95c9a97a4581 0.992095
26c1022a-7a8e-42a2-b7cc-bea6bffa7a6f 1.000000
2 0 953a525c-97e0-4c2f-90e0-dfebde3ec20d 0.755332
9c08c860-7a6d-4810-a5c3-f3af2a3fcf66 0.902760
Name: running_pct, dtype: float64
EDIT:
Per the comments, if you're looking to wring out a little more performance, this will be faster as of version 0.14.1
y['cumsum'] = y.groupby(level=[0,1])['minutes'].transform('cumsum')
y['running_pct'] = y['cumsum'] / y.groupby(level=[0,1])['minutes'].transform('sum')
And as @Jeff notes, in 0.15.0 this may be faster yet.
y['running_pct'] = y['cumsum'] / y.groupby(level=[0,1])['minutes'].transform('last')
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With