I have a data-frame that looks like
*id*, *name*, *URL*, *Type*
2, birth_france_by_region, http://abc. com, T1
2, birth_france_by_region, http://pt. python, T2
3, long_lat, http://abc. com, T3
3, long_lat, http://pqur. com, T1
4, random_time_series, http://sadsdc. com, T2
4, random_time_series, http://sadcadf. com, T3
5, birth_names, http://google. com, T1
5, birth_names, http://helloworld. com,T2
5, birth_names, http://hu. com, T3
I want a this dataframe to merge the rows where id are equal and have a list of Type corresponding list of URL so final output should be like
*id*, *name*, *URL*, *Type*
2,birth_france_by_region, [http://abc .com,http://pt.python], [T1,T2]
3,long_lat, [http://abc .com,http://pqur. com], [T3,T1]
4,random_time_series, [http://sadsdc. com,http://sadcadf .com,],[T2,T3]
5,birth_names, [http://google .com,http://helloworld. com,
http://hu. com] , [T1,T2,T3]
You can use DataFrame. apply() for concatenate multiple column values into a single column, with slightly less typing and more scalable when you want to join multiple columns .
Pandas merge() function is used to merge multiple Dataframes. We can use either pandas. merge() or DataFrame. merge() to merge multiple Dataframes.
I think you need groupby
and aggregate tuple
and then convert to list
:
df = df.groupby(['id','name']).agg(tuple).applymap(list).reset_index()
print (df)
id name \
0 2 birth_france_by_region
1 3 long_lat
2 4 random_time_series
3 5 birth_names
URL Type
0 [http://abc.cm, http://pt.python] [T1, T2]
1 [http://abc.cm, http://pqur.com] [T3, T1]
2 [http://sadsdc.com, http://sadcadf.com] [T2, T3]
3 [http://google.;com, http://helloworld.com, ht... [T1, T2, T3]
Because in version 0.20.3 raise error:
df = df.groupby(['id','name']).agg(lambda x: x.tolist())
ValueError: Function does not reduce
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With