I have data in long format and am trying to reshape to wide, but there doesn't seem to be a straightforward way to do this using melt/stack/unstack:
Salesman Height product price
Knut 6 bat 5
Knut 6 ball 1
Knut 6 wand 3
Steve 5 pen 2
Becomes:
Salesman Height product_1 price_1 product_2 price_2 product_3 price_3
Knut 6 bat 5 ball 1 wand 3
Steve 5 pen 2 NA NA NA NA
I think Stata can do something like this with the reshape command.
To summarize, if you need to reshape a Pandas dataframe from long to wide, use pd. pivot() . If you need to reshape a Pandas dataframe from wide to long, use pd. melt() .
stack(), and . wide_to_long(). These functions are used to convert Columns into rows, also known as reshaping a dataframe from a Wide to a Long format.
This solution also uses looping to get the job done, but apply has been optimized better than iterrows , which results in faster runtimes. See below for an example of how we could use apply for labeling the species in each row.
A simple pivot might be sufficient for your needs but this is what I did to reproduce your desired output:
df['idx'] = df.groupby('Salesman').cumcount()
Just adding a within group counter/index will get you most of the way there but the column labels will not be as you desired:
print df.pivot(index='Salesman',columns='idx')[['product','price']]
product price
idx 0 1 2 0 1 2
Salesman
Knut bat ball wand 5 1 3
Steve pen NaN NaN 2 NaN NaN
To get closer to your desired output I added the following:
df['prod_idx'] = 'product_' + df.idx.astype(str)
df['prc_idx'] = 'price_' + df.idx.astype(str)
product = df.pivot(index='Salesman',columns='prod_idx',values='product')
prc = df.pivot(index='Salesman',columns='prc_idx',values='price')
reshape = pd.concat([product,prc],axis=1)
reshape['Height'] = df.set_index('Salesman')['Height'].drop_duplicates()
print reshape
product_0 product_1 product_2 price_0 price_1 price_2 Height
Salesman
Knut bat ball wand 5 1 3 6
Steve pen NaN NaN 2 NaN NaN 5
Edit: if you want to generalize the procedure to more variables I think you could do something like the following (although it might not be efficient enough):
df['idx'] = df.groupby('Salesman').cumcount()
tmp = []
for var in ['product','price']:
df['tmp_idx'] = var + '_' + df.idx.astype(str)
tmp.append(df.pivot(index='Salesman',columns='tmp_idx',values=var))
reshape = pd.concat(tmp,axis=1)
@Luke said:
I think Stata can do something like this with the reshape command.
You can but I think you also need a within group counter to get the reshape in stata to get your desired output:
+-------------------------------------------+
| salesman idx height product price |
|-------------------------------------------|
1. | Knut 0 6 bat 5 |
2. | Knut 1 6 ball 1 |
3. | Knut 2 6 wand 3 |
4. | Steve 0 5 pen 2 |
+-------------------------------------------+
If you add idx
then you could do reshape in stata
:
reshape wide product price, i(salesman) j(idx)
Here's another solution more fleshed out, taken from Chris Albon's site.
raw_data = {'patient': [1, 1, 1, 2, 2],
'obs': [1, 2, 3, 1, 2],
'treatment': [0, 1, 0, 1, 0],
'score': [6252, 24243, 2345, 2342, 23525]}
df = pd.DataFrame(raw_data, columns = ['patient', 'obs', 'treatment', 'score'])
df.pivot(index='patient', columns='obs', values='score')
Karl D's solution gets at the heart of the problem. But I find it's far easier to pivot everything (with .pivot_table
because of the two index columns) and then sort
and assign the columns to collapse the MultiIndex
:
df['idx'] = df.groupby('Salesman').cumcount()+1
df = df.pivot_table(index=['Salesman', 'Height'], columns='idx',
values=['product', 'price'], aggfunc='first')
df = df.sort_index(axis=1, level=1)
df.columns = [f'{x}_{y}' for x,y in df.columns]
df = df.reset_index()
Salesman Height price_1 product_1 price_2 product_2 price_3 product_3
0 Knut 6 5.0 bat 1.0 ball 3.0 wand
1 Steve 5 2.0 pen NaN NaN NaN NaN
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With