I have a large table with many product id's and iso_codes: 2 million rows in total. So the answer should (if possible) also take into account memory issues, I have 16 GB memory.
I would like to see for every (id, iso_code) combination what the number of items returned is before the buy_date in the row (so cumulative), but there's a catch:
I only want to count returns that happened from previous sales where the return_date is before the buy_date I'm looking at.
I've added column items_returned as an example: this is the column that should be calculated.
The idea is as follows:
At the moment of the sale I can only count returns that have happened already, not the ones that will happen in the future.
I tried a combination of df.groupby(['id', 'iso_code']).transform(np.cumsum)
and .transform(lambda x: only count returns that happened before my buy_date)
, but couldn't figure out how to do a .groupby.transform(np.cumsum)
with these special conditions applying.
Similar question for items bought, where I only count items cumulative for days smaller than my buy_date.
Hope you can help me.
Example resulting table:
+-------+------+------------+----------+------------+---------------+----------------+------------------+
| row | id | iso_code | return | buy_date | return_date | items_bought | items_returned |
|-------+------+------------+----------+------------+---------------+----------------+------------------|
| 0 | 177 | DE | 1 | 2019-05-16 | 2019-05-24 | 0 | 0 |
| 1 | 177 | DE | 1 | 2019-05-29 | 2019-06-03 | 1 | 1 |
| 2 | 177 | DE | 1 | 2019-10-27 | 2019-11-06 | 2 | 2 |
| 3 | 177 | DE | 0 | 2019-11-06 | None | 3 | 2 |
| 4 | 177 | DE | 1 | 2019-11-18 | 2019-11-28 | 4 | 3 |
| 5 | 177 | DE | 1 | 2019-11-21 | 2019-12-11 | 5 | 3 |
| 6 | 177 | DE | 1 | 2019-11-25 | 2019-12-06 | 6 | 3 |
| 7 | 177 | DE | 0 | 2019-11-30 | None | 7 | 4 |
| 8 | 177 | DE | 1 | 2020-04-30 | 2020-05-27 | 8 | 6 |
| 9 | 177 | DE | 1 | 2020-04-30 | 2020-09-18 | 8 | 6 |
+-------+------+------------+----------+------------+---------------+----------------+------------------+
Sample code:
import pandas as pd
from io import StringIO
df_text = """
row id iso_code return buy_date return_date
0 177 DE 1 2019-05-16 2019-05-24
1 177 DE 1 2019-05-29 2019-06-03
2 177 DE 1 2019-10-27 2019-11-06
3 177 DE 0 2019-11-06 None
4 177 DE 1 2019-11-18 2019-11-28
5 177 DE 1 2019-11-21 2019-12-11
6 177 DE 1 2019-11-25 2019-12-06
7 177 DE 0 2019-11-30 None
8 177 DE 1 2020-04-30 2020-05-27
9 177 DE 1 2020-04-30 2020-09-18
"""
df = pd.read_csv(StringIO(df_text), sep='\t', index_col=0)
df['items_bought'] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 8]
df['items_returned'] = [0, 1, 2, 2, 3, 3, 3, 4, 6, 6]
This seems to require a cross merge:
(df[['id','iso_code', 'buy_date']].reset_index()
.merge(df[['id','iso_code', 'return','return_date','buy_date']], on=['id','iso_code'])
.assign(items_returned=lambda x: x['return_date'].lt(x['buy_date_x'])*x['return'],
items_bought=lambda x: x['buy_date_y'].lt(x['buy_date_x']))
.groupby('row')[['items_bought','items_returned']].sum()
)
Output:
items_bought items_returned
row
0 0 0
1 1 1
2 2 2
3 3 2
4 4 3
5 5 3
6 6 3
7 7 4
8 8 6
9 8 6
Update for larger data, cross merge is not ideal due to memory requirement. We can then do a groupby()
so we only merge on smaller groups:
def myfunc(df):
return (df[['id','iso_code', 'buy_date']].reset_index()
.merge(df[['id','iso_code', 'return','return_date','buy_date']], on=['id','iso_code'])
.assign(items_returned=lambda x: x['return_date'].lt(x['buy_date_x'])*x['return'],
items_bought=lambda x: x['buy_date_y'].lt(x['buy_date_x']))
.groupby('row')[['items_bought','items_returned']].sum()
)
df.groupby(['id','iso_code']).apply(myfunc).reset_index(level=[0,1], drop=True)
And you would get the same output:
items_bought items_returned
row
0 0 0
1 1 1
2 2 2
3 3 2
4 4 3
5 5 3
6 6 3
7 7 4
8 8 6
9 8 6
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With