I have a data frame, which I created in pandas, grouping by date and summarizing by rides.
date rides
0 2019-01-01 247279
1 2019-01-02 585996
2 2019-01-03 660631
3 2019-01-04 662011
4 2019-01-05 440848
.. ... ...
451 2020-03-27 218499
452 2020-03-28 143305
453 2020-03-29 110833
454 2020-03-30 207743
455 2020-03-31 199623
[456 rows x 2 columns]
My date
column is in datetime64[ns]
.
date datetime64[ns]
rides int64
dtype: object
Now I would like to create another data frame, grouping by month and year (I have data form 2019 and 2020) and summarize by rides.
Ideal output:
Year Month Rides
2019 January 2000000
2020 March 1000000
you can groupby
and get the dt.year and the dt.month_name from the column date.
print (df.groupby([df['date'].dt.year.rename('year'),
df['date'].dt.month_name().rename('month')])
['rides'].sum().reset_index())
year month rides
0 2019 January 2596765
1 2020 March 880003
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With