I have dataframe:
df = pd.DataFrame({'ID':[1,1,2,2,3,3],
'YEAR' : [2011,2012,2012,2013,2013,2014],
'V': [0,1,1,0,1,0],
'C':[00,11,22,33,44,55]})
I would like to group by ID, and select the row with V = 0 within each group.
This doesn't seem to work:
print(df.groupby(['ID']).filter(lambda x: x['V'] == 0))
Got an error:
TypeError: filter function returned a Series, but expected a scalar bool
How can I use filter to achieve the goal? Thank you.
EDIT: The condition on V may vary for each group, e.g., it could be V==0 for ID 1, V==1 for ID 2, and this info can be available through another DF:
df = pd.DataFrame({'ID':[1,2,3],
'V': [0,1,0])
So how to do row filtering within each group?
I think groupby
is not necessary, use boolean indexing
only if need all rows where V
is 0
:
print (df[df.V == 0])
C ID V YEAR
0 0 1 0 2011
3 33 2 0 2013
5 55 3 0 2014
But if need return all groups where is at least one value of column V
equal 0
add any
, because filter need True
or False
for filtering all rows in group:
print(df.groupby(['ID']).filter(lambda x: (x['V'] == 0).any()))
C ID V YEAR
0 0 1 0 2011
1 11 1 1 2012
2 22 2 1 2012
3 33 2 0 2013
4 44 3 1 2013
5 55 3 0 2014
Better for testing is change column for groupby
- row with 2012
is filter out because no V==0
:
print(df.groupby(['YEAR']).filter(lambda x: (x['V'] == 0).any()))
C ID V YEAR
0 0 1 0 2011
3 33 2 0 2013
4 44 3 1 2013
5 55 3 0 2014
If performance is important use GroupBy.transform
with boolean indexing
:
print(df[(df['V'] == 0).groupby(df['YEAR']).transform('any')])
ID YEAR V C
0 1 2011 0 0
3 2 2013 0 33
4 3 2013 1 44
5 3 2014 0 55
Detail:
print((df['V'] == 0).groupby(df['YEAR']).transform('any'))
0 True
1 False
2 False
3 True
4 True
5 True
Name: V, dtype: bool
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With