import pandas as pd
import numpy as np
from datetime import datetime
df = pd.DataFrame(
    { 
        'Date' : np.random.choice(pd.date_range(datetime(2020,1,1),periods=5),20),
        'Product' : np.random.choice(['Milk','Brandy','Beer'],20)   ,    
     'Quantity' : np.random.randint(10,99,20)
        
    }  
)
df.groupby(['Date','Product']).sum()
This will give,

I would like to get the max values of the sum within the group what is the best way to do it?
Expected result for my random sample value would be.

How can I achieve this result.
You can chain with another groupby, this time on your first level of your index (product) and get the max:
df.groupby(['Date','Product']).sum().groupby(level=1).max()
         Quantity
Product          
Beer          160
Brandy         97
Milk          245
To get the date as well, use sort_values with tail:
(
    df.groupby(['Date','Product']).sum()
    .sort_values('Quantity')
    .groupby(level=1)
    .tail(1)
)
        Date Product  Quantity
0 2020-01-04    Beer        81
1 2020-01-03    Milk       186
2 2020-01-03  Brandy       212
                        If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With