In the dataframe below, I would like to eliminate the duplicate cid
values so the output from df.groupby('date').cid.size()
matches the output from df.groupby('date').cid.nunique()
.
I have looked at this post but it does not seem to have a solid solution to the problem.
df = pd.read_csv('https://raw.githubusercontent.com/108michael/ms_thesis/master/crsp.dime.mpl.df')
df.groupby('date').cid.size()
date
2005 7
2006 237
2007 3610
2008 1318
2009 2664
2010 997
2011 6390
2012 2904
2013 7875
2014 3979
df.groupby('date').cid.nunique()
date
2005 3
2006 10
2007 227
2008 52
2009 142
2010 57
2011 219
2012 99
2013 238
2014 146
Name: cid, dtype: int64
Things I tried:
df.groupby([df['date']]).drop_duplicates(cols='cid')
gives this error: AttributeError: Cannot access callable attribute 'drop_duplicates' of 'DataFrameGroupBy' objects, try using the 'apply' method
df.groupby(('date').drop_duplicates('cid'))
gives this error: AttributeError: 'str' object has no attribute 'drop_duplicates'
Remove All Duplicate Rows from Pandas DataFrame You can set 'keep=False' in the drop_duplicates() function to remove all the duplicate rows. For E.x, df. drop_duplicates(keep=False) .
To remove duplicates of only one or a subset of columns, specify subset as the individual column or list of columns that should be unique. To do this conditional on a different column's value, you can sort_values(colname) and specify keep equals either first or last .
Only consider certain columns for identifying duplicates, by default use all of the columns. Determines which duplicates (if any) to keep. - first : Drop duplicates except for the first occurrence.
Dropping duplicate rows We can use Pandas built-in method drop_duplicates() to drop duplicate rows. Note that we started out as 80 rows, now it's 77. By default, this method returns a new DataFrame with duplicate rows removed. We can set the argument inplace=True to remove duplicates from the original DataFrame.
You don't need groupby to drop duplicates based on a few columns, you can specify a subset instead:
df2 = df.drop_duplicates(["date", "cid"])
df2.groupby('date').cid.size()
Out[99]:
date
2005 3
2006 10
2007 227
2008 52
2009 142
2010 57
2011 219
2012 99
2013 238
2014 146
dtype: int64
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With