Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

pandas: DataFrame.mean() very slow. How can I calculate means of columns faster?

I have a rather large CSV file, it contains 9917530 rows (without the header), and 54 columns. Columns are real or integer, only one contains dates. There is a few NULL values on the file, which are translated to nan after I load it to pandas DataFrame, which I do like this:

import pandas as pd
data = pd.read_csv('data.csv')

After loading, which I think was very fast, cause it took around 30 seconds (pretty much the same time as counting lines with the Unix tool wc), the process was taking around 4Gb of RAM (the size of of the file on disk: 2.2 Gb. So far so good.

Then I tried to do the following:

column_means = data.mean()

The process' occupied memory grew to ~22Gb very quickly. I could also see the processor (one core) was very very busy - for like three hours, after that I killed the process, cause I needed to use the machine for other things. I have a pretty fast PC with Linux - it has 2 processors, each having 4 cores, so it's 8 cores all together, and 32 Gb of RAM. I cannot believe calculating column means should take so long.

Can anybody explain why DataFrame.mean() is so slow? And more importantly, what is a better way of calculating means of columns of a file like that? Did I not load the file the best way possible, should I use a different function instead of DataFrame.mean() or perhaps a completely different tool?

Many thanks in advance.

EDIT. Here is what df.info() shows:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 9917530 entries, 0 to 9917529
Data columns (total 54 columns):
srch_id                        9917530  non-null values
date_time                      9917530  non-null values
site_id                        9917530  non-null values
visitor_location_country_id    9917530  non-null values
visitor_hist_starrating        505297  non-null values
visitor_hist_adr_usd           507612  non-null values
prop_country_id                9917530  non-null values
prop_id                        9917530  non-null values
prop_starrating                9917530  non-null values
prop_review_score              9902900  non-null values
prop_brand_bool                9917530  non-null values
prop_location_score1           9917530  non-null values
prop_location_score2           7739150  non-null values
prop_log_historical_price      9917530  non-null values
position                       9917530  non-null values
price_usd                      9917530  non-null values
promotion_flag                 9917530  non-null values
srch_destination_id            9917530  non-null values
srch_length_of_stay            9917530  non-null values
srch_booking_window            9917530  non-null values
srch_adults_count              9917530  non-null values
srch_children_count            9917530  non-null values
srch_room_count                9917530  non-null values
srch_saturday_night_bool       9917530  non-null values
srch_query_affinity_score      635564  non-null values
orig_destination_distance      6701069  non-null values
random_bool                    9917530  non-null values
comp1_rate                     235806  non-null values
comp1_inv                      254433  non-null values
comp1_rate_percent_diff        184907  non-null values
comp2_rate                     4040633  non-null values
comp2_inv                      4251538  non-null values
comp2_rate_percent_diff        1109847  non-null values
comp3_rate                     3059273  non-null values
comp3_inv                      3292221  non-null values
comp3_rate_percent_diff        944007  non-null values
comp4_rate                     620099  non-null values
comp4_inv                      692471  non-null values
comp4_rate_percent_diff        264213  non-null values
comp5_rate                     4444294  non-null values
comp5_inv                      4720833  non-null values
comp5_rate_percent_diff        1681006  non-null values
comp6_rate                     482487  non-null values
comp6_inv                      524145  non-null values
comp6_rate_percent_diff        193312  non-null values
comp7_rate                     631077  non-null values
comp7_inv                      713175  non-null values
comp7_rate_percent_diff        277838  non-null values
comp8_rate                     3819043  non-null values
comp8_inv                      3960388  non-null values
comp8_rate_percent_diff        1225707  non-null values
click_bool                     9917530  non-null values
gross_bookings_usd             276592  non-null values
booking_bool                   9917530  non-null values
dtypes: float64(34), int64(19), object(1)None
like image 796
piokuc Avatar asked Sep 09 '13 15:09

piokuc


1 Answers

Here's a similar sized from , but without an object column

In [10]: nrows = 10000000

In [11]: df = pd.concat([DataFrame(randn(int(nrows),34),columns=[ 'f%s' % i for i in range(34) ]),DataFrame(randint(0,10,size=int(nrows*19)).reshape(int(nrows),19),columns=[ 'i%s' % i for i in range(19) ])],axis=1)

In [12]: df.iloc[1000:10000,0:20] = np.nan

In [13]: df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 10000000 entries, 0 to 9999999
Data columns (total 53 columns):
f0     9991000  non-null values
f1     9991000  non-null values
f2     9991000  non-null values
f3     9991000  non-null values
f4     9991000  non-null values
f5     9991000  non-null values
f6     9991000  non-null values
f7     9991000  non-null values
f8     9991000  non-null values
f9     9991000  non-null values
f10    9991000  non-null values
f11    9991000  non-null values
f12    9991000  non-null values
f13    9991000  non-null values
f14    9991000  non-null values
f15    9991000  non-null values
f16    9991000  non-null values
f17    9991000  non-null values
f18    9991000  non-null values
f19    9991000  non-null values
f20    10000000  non-null values
f21    10000000  non-null values
f22    10000000  non-null values
f23    10000000  non-null values
f24    10000000  non-null values
f25    10000000  non-null values
f26    10000000  non-null values
f27    10000000  non-null values
f28    10000000  non-null values
f29    10000000  non-null values
f30    10000000  non-null values
f31    10000000  non-null values
f32    10000000  non-null values
f33    10000000  non-null values
i0     10000000  non-null values
i1     10000000  non-null values
i2     10000000  non-null values
i3     10000000  non-null values
i4     10000000  non-null values
i5     10000000  non-null values
i6     10000000  non-null values
i7     10000000  non-null values
i8     10000000  non-null values
i9     10000000  non-null values
i10    10000000  non-null values
i11    10000000  non-null values
i12    10000000  non-null values
i13    10000000  non-null values
i14    10000000  non-null values
i15    10000000  non-null values
i16    10000000  non-null values
i17    10000000  non-null values
i18    10000000  non-null values
dtypes: float64(34), int64(19)

Timings (similar machine specs to you)

In [14]: %timeit df.mean()
1 loops, best of 3: 21.5 s per loop

You can get a 2x speedup by pre-converting to floats (mean does this, but does it in a more general way, so slower)

In [15]: %timeit df.astype('float64').mean()
1 loops, best of 3: 9.45 s per loop

You problem is the object column. Mean will try to calculate for all of the columns, but because of the object column everything is upcast to object dtype which is not efficient for calculating.

Best bet is to do

 df._get_numeric_data().mean()

There is an option to do this numeric_only, at the lower level, but for some reason we don't directly support this via the top-level functions (e.g. mean). I think will create an issue to add this parameter. However will prob be False by default (to not-exclude).

like image 191
Jeff Avatar answered Oct 15 '22 02:10

Jeff