Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

pandas dataframe with list elements: split, pad

Tags:

python

pandas

I have a pandas dataframe (NROWS x 1) where each row is a list , such as

    y 
0   [[aa, bb], 0000001]   
1   [[uz, mk], 0000011]

I want to flatten the list and split into (in this case three) columns like so:

    1  2  3
0   aa bb 0000001
1   uz mk 0000011

Further, different rows have unequal lengths:

    y
0   [[aa, bb], 0000001]
1   [[mk], 0000011]

What I really want to end up with is, detect the max length over all rows and pad the rest to empty string ''. In this example,

    1  2  3
0   aa bb 0000001
1   '' mk 0000011

I've toyed around with doing .values.tolist() but it doesn't do what I need.

Edit- the answers below are super neat and much appreciated. I'm editing to include a solution for a similar but simpler problem, for completeness.

Read data, use the trim() fn from Strip / trim all strings of a dataframe to make sure there is no left/right whitespace

df = pd.read_csv('data.csv',sep=',',dtype=str)
df = trim_all_columns(df) 

Keep categorical/nominal ID and CODE columns, remove all NA

df.dropna(subset=['dg_cd'] , inplace=True) # drop dg_cd is NaN rows from df 

df2 = df[['id','dg_cd']]

Turn CODE into sentences by ID keeping all repeated instances

x = df2.groupby('id').apply(lambda x: x['dg_cd'].values.tolist()).apply(pd.Series).replace(np.nan, '', regex=True)

The reason for doing all that is because that feeds into a k-modes cluster search, https://pypi.org/project/kmodes/. NA is not an acceptable input but empty strings

''

allow rows of same length while there is no spurious similarity. For example,

km = KModes(n_clusters=4, init='Cao', n_init=1, verbose=1)

clusters = km.fit_predict( x )
like image 836
user3100205 Avatar asked Jun 10 '19 21:06

user3100205


1 Answers

Setup

df = pd.DataFrame(dict(y=[
    [['aa', 'bb'], '0000001'],
    [['uz', 'mk'], '0000011'],
    [['mk'], '0000111']
]))

df

                     y
0  [[aa, bb], 0000001]
1  [[uz, mk], 0000011]
2      [[mk], 0000111]

flatten

From @wim

def flatten(x):
    try:
        it = iter(x)
    except TypeError:
        yield x
        return
    if isinstance(x, str):
        yield x
        return
    for elem in it:
        yield from flatten(elem)

d = dict(zip(df.index, [dict(enumerate([*flatten(x)][::-1])) for x in df.y]))

d = pd.DataFrame.from_dict(d, 'index').fillna('')
d.iloc[:, ::-1].rename(columns=lambda x: d.shape[1] - x)

    1   2        3
0  aa  bb  0000001
1  uz  mk  0000011
2      mk  0000111
like image 86
piRSquared Avatar answered Sep 30 '22 04:09

piRSquared