I am reading an excel file that has several numerical and categorical data. The columns name_string contains characters in a foreign language. When I try to see the content of the name_string column, I get the results I want, but the foreign characters (that are displayed correctly in the excel spreadsheet) are displayed with the wrong encoding. Here is what I have:
import pandas as pd
df = pd.read_excel('MC_simulation.xlsx', 'DataSet', encoding='utf-8')
name_string = df.name_string.unique()
name_string.sort()
name_string
Producing the following:
array([u'4th of July', u'911', u'Abab', u'Abass', u'Abcar', u'Abced',
u'Ceded', u'Cedes', u'Cedfus', u'Ceding', u'Cedtim', u'Cedtol',
u'Cedxer', u'Chevrolet Corvette', u'Chuck Norris',
u'Cristina Fern\xe1ndez de Kirchner'], dtype=object)
In the last line, the correctly encoded name should be Cristina Fernández de Kirchner. Can anybody help me with this issue?
To read an excel file as a DataFrame, use the pandas read_excel() method. You can read the first sheet, specific sheets, multiple sheets or all sheets. Pandas converts this to the DataFrame structure, which is a tabular like structure.
Use pandas. read_excel() function to read excel sheet into pandas DataFrame, by default it loads the first sheet from the excel file and parses the first row as a DataFrame column name. Excel file has an extension . xlsx.
Actually, the data is being parsed correctly into unicode, not strs
. The u
prefix indicate that the objects are unicode
. When a list, tuple, or NumPy array is printed, Python shows the repr
of the items in the sequence. So instead of seeing the printed version of the unicode
, you see the repr
:
In [160]: repr(u'Cristina Fern\xe1ndez de Kirchner')
Out[160]: "u'Cristina Fern\\xe1ndez de Kirchner'"
In [156]: print(u'Cristina Fern\xe1ndez de Kirchner')
Cristina Fernández de Kirchner
The purpose of the repr
is to provide an unambiguous string representation for each object. The printed verson of a unicode can be ambiguous because of invisible or unprintable characters.
If you print the DataFrame or Series, however, you'll get the printed version of the unicodes:
In [157]: df = pd.DataFrame({'foo':np.array([u'4th of July', u'911', u'Abab', u'Abass', u'Abcar', u'Abced',
u'Ceded', u'Cedes', u'Cedfus', u'Ceding', u'Cedtim', u'Cedtol',
u'Cedxer', u'Chevrolet Corvette', u'Chuck Norris',
u'Cristina Fern\xe1ndez de Kirchner'], dtype=object)})
.....: .....: .....:
In [158]: df
Out[158]:
foo
0 4th of July
1 911
2 Abab
3 Abass
4 Abcar
5 Abced
6 Ceded
7 Cedes
8 Cedfus
9 Ceding
10 Cedtim
11 Cedtol
12 Cedxer
13 Chevrolet Corvette
14 Chuck Norris
15 Cristina Fernández de Kirchner
[16 rows x 1 columns]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With