I have a Pandas dataframe and I need to convert a column with dates to int but unfortunately all the given solutions end up with errors (below)
test_df.info()
<class 'pandas.core.frame.DataFrame'>
Data columns (total 4 columns):
Date 1505 non-null object
Avg 1505 non-null float64
TotalVol 1505 non-null float64
Ranked 1505 non-null int32
dtypes: float64(2), int32(1), object(1)
sample data:
Date Avg TotalVol Ranked
0 2014-03-29 4400.000000 0.011364 1
1 2014-03-30 1495.785714 4.309310 1
2 2014-03-31 1595.666667 0.298571 1
3 2014-04-01 1523.166667 0.270000 1
4 2014-04-02 1511.428571 0.523792 1
I think that I've tried everything but nothing works
test_df['Date'].astype(int):
TypeError: int() argument must be a string, a bytes-like object or a number, not 'datetime.date'
test_df['Date']=pd.to_numeric(test_df['Date']):
TypeError: Invalid object type at position 0
test_df['Date'].astype(str).astype(int):
ValueError: invalid literal for int() with base 10: '2014-03-29'
test_df['Date'].apply(pd.to_numeric, errors='coerce'):
Converts the entire column to NaNs
Looks like you need pd.to_datetime().dt.strftime("%Y%m%d")
.
Demo:
import pandas as pd
df = pd.DataFrame({"Date": ["2014-03-29", "2014-03-30", "2014-03-31"]})
df["Date"] = pd.to_datetime(df["Date"]).dt.strftime("%Y%m%d")
print( df )
Output:
Date
0 20140329
1 20140330
2 20140331
The reason why test_df['Date'].astype(int)
gives you an error is that your dates still contain hyphens "-". First suppress them by doing test_df['Date'].str.replace("-","")
, then you can apply your first method to the resulting series. So the whole solution would be :
test_df['Date'].str.replace("-","").astype(int)
Note that this won't work if your "Date" column is not a string object, typically when Pandas has already parsed your series as TimeStamp. In this case you can use :
test_df['Date'].dt.strftime("%Y%m%d").astype(int)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With