Is it possible to specify a float precision specifically for each column to be printed by the Python pandas
package method pandas.DataFrame.to_csv?
If I have a pandas
dataframe that is arranged like this:
In [53]: df_data[:5]
Out[53]:
year month day lats lons vals
0 2012 6 16 81.862745 -29.834254 0.0
1 2012 6 16 81.862745 -29.502762 0.1
2 2012 6 16 81.862745 -29.171271 0.0
3 2012 6 16 81.862745 -28.839779 0.2
4 2012 6 16 81.862745 -28.508287 0.0
There is the float_format
option that can be used to specify a precision, but this applys that precision to all columns of the dataframe when printed.
When I use that like so:
df_data.to_csv(outfile, index=False,
header=False, float_format='%11.6f')
I get the following, where vals
is given an inaccurate precision:
2012,6,16, 81.862745, -29.834254, 0.000000
2012,6,16, 81.862745, -29.502762, 0.100000
2012,6,16, 81.862745, -29.171270, 0.000000
2012,6,16, 81.862745, -28.839779, 0.200000
2012,6,16, 81.862745, -28.508287, 0.000000
Pandas DataFrame to_csv() function converts DataFrame into CSV data. We can pass a file object to write the CSV data into a file. Otherwise, the CSV data is returned in the string format.
When you write pandas DataFrame to an existing CSV file, it overwrites the file with the new contents. To append a DataFrame to an existing CSV file, you need to specify the append write mode using mode='a' .
to_csv() function write the given series object to a comma-separated values (csv) file/format. Parameter : path_or_buf : File path or object, if None is provided the result is returned as a string.
Pandas Series is a one-dimensional labeled array capable of holding data of any type (integer, string, float, python objects, etc.).
Change the type of column "vals" prior to exporting the data frame to a CSV file
df_data['vals'] = df_data['vals'].map(lambda x: '%2.1f' % x)
df_data.to_csv(outfile, index=False, header=False, float_format='%11.6f')
The more current version of hknust's first line would be:
df_data['vals'] = df_data['vals'].map(lambda x: '{0:.1}'.format(x))
To print without scientific notation:
df_data['vals'] = df_data['vals'].map(lambda x: '{0:.1f}'.format(x))
This question is a bit old, but I'd like to contribute with a better answer, I think so:
formats = {'lats': '{:10.5f}', 'lons': '{:.3E}', 'vals': '{:2.1f}'}
for col, f in formats.items():
df_data[col] = df_data[col].map(lambda x: f.format(x))
I tried with the solution here, but it didn't work for me, I decided to experiment with previus solutions given here combined with that from the link above.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With