I was wondering if there was a more efficient way to do the following operation.
# transforms datetime into timestamp in seconds
t = df.index.values.astype(np.int64) // 10**6
return jsonify(np.c_[t, df.open, df.high, df.low, df.close, df.volume].tolist())
where df is a dataframe containing an index that is a date, and at least (but not only) the following attributes: open, high, low, close, volume. I then output the newly created array as JSON with flask's jsonify. The code above works but it looks pretty inefficient to me any idea on how to make it nicer/more efficient.
You can convert JSON to Pandas DataFrame by simply using read_json() . Just pass JSON string to the function. It takes multiple parameters, for our case I am using orient that specifies the format of JSON string. This function is also used to read JSON files into pandas DataFrame.
You can convert pandas DataFrame to JSON string by using DataFrame. to_json() method. This method takes a very important param orient which accepts values ' columns ', ' records ', ' index ', ' split ', ' table ', and ' values '.
Pandas DataFrame can be converted into lists in multiple ways. Let's have a look at different ways of converting a DataFrame one by one. Method #1: Converting a DataFrame to List containing all the rows of a particular column: Python3.
orient: strIndication of expected JSON string format. Compatible JSON strings can be produced by to_json() with a corresponding orient value. The set of possible orients is: 'split' : dict like {index -> [index], columns -> [columns], data -> [values]} 'records' : list like [{column -> value}, ... , {column -> value}]
you can use to_json() method:
In [88]: import pandas_datareader.data as web
In [89]: apl = web.get_data_yahoo('AAPL', '2016-07-05', '2016-07-07')
In [90]: apl
Out[90]:
                 Open       High        Low      Close    Volume  Adj Close
Date
2016-07-05  95.389999  95.400002  94.459999  94.989998  27705200  94.989998
2016-07-06  94.599998  95.660004  94.370003  95.529999  30949100  95.529999
2016-07-07  95.699997  96.500000  95.620003  95.940002  25139600  95.940002
I'll use json.dumps(..., indent=2) in order to make it nicer/readable:
In [91]: import json
orient='index'
In [98]: print(json.dumps(json.loads(apl.to_json(orient='index')), indent=2))
{
  "1467849600000": {
    "Close": 95.940002,
    "High": 96.5,
    "Open": 95.699997,
    "Adj Close": 95.940002,
    "Volume": 25139600,
    "Low": 95.620003
  },
  "1467676800000": {
    "Close": 94.989998,
    "High": 95.400002,
    "Open": 95.389999,
    "Adj Close": 94.989998,
    "Volume": 27705200,
    "Low": 94.459999
  },
  "1467763200000": {
    "Close": 95.529999,
    "High": 95.660004,
    "Open": 94.599998,
    "Adj Close": 95.529999,
    "Volume": 30949100,
    "Low": 94.370003
  }
}
orient='records' (reset index in order to make column Date visible):
In [99]: print(json.dumps(json.loads(apl.reset_index().to_json(orient='records')), indent=2))
[
  {
    "Close": 94.989998,
    "High": 95.400002,
    "Open": 95.389999,
    "Adj Close": 94.989998,
    "Volume": 27705200,
    "Date": 1467676800000,
    "Low": 94.459999
  },
  {
    "Close": 95.529999,
    "High": 95.660004,
    "Open": 94.599998,
    "Adj Close": 95.529999,
    "Volume": 30949100,
    "Date": 1467763200000,
    "Low": 94.370003
  },
  {
    "Close": 95.940002,
    "High": 96.5,
    "Open": 95.699997,
    "Adj Close": 95.940002,
    "Volume": 25139600,
    "Date": 1467849600000,
    "Low": 95.620003
  }
]
you can make use of the following to_json() parameters:
date_format : {‘epoch’, ‘iso’}
Type of date conversion. epoch = epoch milliseconds, iso` = ISO8601, default is epoch.
date_unit : string, default ‘ms’ (milliseconds)
The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.
orient : string
The format of the JSON string
- split : dict like {index -> [index], columns -> [columns], data -> [values]}
 - records : list like [{column -> value}, ... , {column -> value}]
 - index : dict like {index -> {column -> value}}
 - columns : dict like {column -> {index -> value}} values : just the values array
 
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With