Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

OS detecting makefile

There are many good answers here already, but I wanted to share a more complete example that both:

  • doesn't assume uname exists on Windows
  • also detects the processor

The CCFLAGS defined here aren't necessarily recommended or ideal; they're just what the project to which I was adding OS/CPU auto-detection happened to be using.

ifeq ($(OS),Windows_NT)
    CCFLAGS += -D WIN32
    ifeq ($(PROCESSOR_ARCHITEW6432),AMD64)
        CCFLAGS += -D AMD64
    else
        ifeq ($(PROCESSOR_ARCHITECTURE),AMD64)
            CCFLAGS += -D AMD64
        endif
        ifeq ($(PROCESSOR_ARCHITECTURE),x86)
            CCFLAGS += -D IA32
        endif
    endif
else
    UNAME_S := $(shell uname -s)
    ifeq ($(UNAME_S),Linux)
        CCFLAGS += -D LINUX
    endif
    ifeq ($(UNAME_S),Darwin)
        CCFLAGS += -D OSX
    endif
    UNAME_P := $(shell uname -p)
    ifeq ($(UNAME_P),x86_64)
        CCFLAGS += -D AMD64
    endif
    ifneq ($(filter %86,$(UNAME_P)),)
        CCFLAGS += -D IA32
    endif
    ifneq ($(filter arm%,$(UNAME_P)),)
        CCFLAGS += -D ARM
    endif
endif

The uname command (http://developer.apple.com/documentation/Darwin/Reference/ManPages/man1/uname.1.html) with no parameters should tell you the operating system name. I'd use that, then make conditionals based on the return value.

Example

UNAME := $(shell uname)

ifeq ($(UNAME), Linux)
# do something Linux-y
endif
ifeq ($(UNAME), Solaris)
# do something Solaris-y
endif

Detect the operating system using two simple tricks:

  • First the environment variable OS
  • Then the uname command
ifeq ($(OS),Windows_NT)     # is Windows_NT on XP, 2000, 7, Vista, 10...
    detected_OS := Windows
else
    detected_OS := $(shell uname)  # same as "uname -s"
endif

Or a more safe way, if not on Windows and uname unavailable:

ifeq ($(OS),Windows_NT) 
    detected_OS := Windows
else
    detected_OS := $(shell sh -c 'uname 2>/dev/null || echo Unknown')
endif

Ken Jackson proposes an interesting alternative if you want to distinguish Cygwin/MinGW/MSYS/Windows. See his answer that looks like that:

ifeq '$(findstring ;,$(PATH))' ';'
    detected_OS := Windows
else
    detected_OS := $(shell uname 2>/dev/null || echo Unknown)
    detected_OS := $(patsubst CYGWIN%,Cygwin,$(detected_OS))
    detected_OS := $(patsubst MSYS%,MSYS,$(detected_OS))
    detected_OS := $(patsubst MINGW%,MSYS,$(detected_OS))
endif

Then you can select the relevant stuff depending on detected_OS:

ifeq ($(detected_OS),Windows)
    CFLAGS += -D WIN32
endif
ifeq ($(detected_OS),Darwin)        # Mac OS X
    CFLAGS += -D OSX
endif
ifeq ($(detected_OS),Linux)
    CFLAGS   +=   -D LINUX
endif
ifeq ($(detected_OS),GNU)           # Debian GNU Hurd
    CFLAGS   +=   -D GNU_HURD
endif
ifeq ($(detected_OS),GNU/kFreeBSD)  # Debian kFreeBSD
    CFLAGS   +=   -D GNU_kFreeBSD
endif
ifeq ($(detected_OS),FreeBSD)
    CFLAGS   +=   -D FreeBSD
endif
ifeq ($(detected_OS),NetBSD)
    CFLAGS   +=   -D NetBSD
endif
ifeq ($(detected_OS),DragonFly)
    CFLAGS   +=   -D DragonFly
endif
ifeq ($(detected_OS),Haiku)
    CFLAGS   +=   -D Haiku
endif

Notes:

  • Command uname is same as uname -s because option -s (--kernel-name) is the default. See why uname -s is better than uname -o.

  • The use of OS (instead of uname) simplifies the identification algorithm. You can still use solely uname, but you have to deal with if/else blocks to check all MinGW, Cygwin, etc. variations.

  • The environment variable OS is always set to "Windows_NT" on different Windows versions (see %OS% environment variable on Wikipedia).

  • An alternative of OS is the environment variable MSVC (it checks the presence of MS Visual Studio, see example using Visual C++).


Below I provide a complete example using make and gcc to build a shared library: *.so or *.dll depending on the platform. The example is as simplest as possible to be more understandable.

To install make and gcc on Windows see Cygwin or MinGW.

My example is based on five files

 ├── lib
 │   └── Makefile
 │   └── hello.h
 │   └── hello.c
 └── app
     └── Makefile
     └── main.c

Reminder: Makefile is indented using tabulation. Caution when copy-pasting below sample files.

The two Makefile files

1. lib/Makefile

ifeq ($(OS),Windows_NT)
    uname_S := Windows
else
    uname_S := $(shell uname -s)
endif

ifeq ($(uname_S), Windows)
    target = hello.dll
endif
ifeq ($(uname_S), Linux)
    target = libhello.so
endif
#ifeq ($(uname_S), .....) #See https://stackoverflow.com/a/27776822/938111
#    target = .....
#endif

%.o: %.c
    gcc  -c $<  -fPIC  -o $@
    # -c $<  => $< is first file after ':' => Compile hello.c
    # -fPIC  => Position-Independent Code (required for shared lib)
    # -o $@  => $@ is the target => Output file (-o) is hello.o

$(target): hello.o
    gcc  $^  -shared  -o $@
    # $^      => $^ expand to all prerequisites (after ':') => hello.o
    # -shared => Generate shared library
    # -o $@   => Output file (-o) is $@ (libhello.so or hello.dll)

2. app/Makefile

ifeq ($(OS),Windows_NT)
    uname_S := Windows
else
    uname_S := $(shell uname -s)
endif

ifeq ($(uname_S), Windows)
    target = app.exe
endif
ifeq ($(uname_S), Linux)
    target = app
endif
#ifeq ($(uname_S), .....) #See https://stackoverflow.com/a/27776822/938111
#    target = .....
#endif

%.o: %.c
    gcc  -c $< -I ../lib  -o $@
    # -c $<     => compile (-c) $< (first file after :) = main.c
    # -I ../lib => search headers (*.h) in directory ../lib
    # -o $@     => output file (-o) is $@ (target) = main.o

$(target): main.o
    gcc  $^  -L../lib  -lhello  -o $@
    # $^       => $^ (all files after the :) = main.o (here only one file)
    # -L../lib => look for libraries in directory ../lib
    # -lhello  => use shared library hello (libhello.so or hello.dll)
    # -o $@    => output file (-o) is $@ (target) = "app.exe" or "app"

To learn more, read Automatic Variables documentation as pointed out by cfi.

The source code

- lib/hello.h

#ifndef HELLO_H_
#define HELLO_H_

const char* hello();

#endif

- lib/hello.c

#include "hello.h"

const char* hello()
{
    return "hello";
}

- app/main.c

#include "hello.h" //hello()
#include <stdio.h> //puts()

int main()
{
    const char* str = hello();
    puts(str);
}

The build

Fix the copy-paste of Makefile (replace leading spaces by one tabulation).

> sed  's/^  */\t/'  -i  */Makefile

The make command is the same on both platforms. The given output is on Unix-like OSes:

> make -C lib
make: Entering directory '/tmp/lib'
gcc  -c hello.c  -fPIC  -o hello.o
# -c hello.c  => hello.c is first file after ':' => Compile hello.c
# -fPIC       => Position-Independent Code (required for shared lib)
# -o hello.o  => hello.o is the target => Output file (-o) is hello.o
gcc  hello.o  -shared  -o libhello.so
# hello.o        => hello.o is the first after ':' => Link hello.o
# -shared        => Generate shared library
# -o libhello.so => Output file (-o) is libhello.so (libhello.so or hello.dll)
make: Leaving directory '/tmp/lib'

> make -C app
make: Entering directory '/tmp/app'
gcc  -c main.c -I ../lib  -o main.o
# -c main.c => compile (-c) main.c (first file after :) = main.cpp
# -I ../lib => search headers (*.h) in directory ../lib
# -o main.o => output file (-o) is main.o (target) = main.o
gcc  main.o  -L../lib  -lhello  -o app
# main.o   => main.o (all files after the :) = main.o (here only one file)
# -L../lib => look for libraries in directory ../lib
# -lhello  => use shared library hello (libhello.so or hello.dll)
# -o app   => output file (-o) is app.exe (target) = "app.exe" or "app"
make: Leaving directory '/tmp/app'

The run

The application requires to know where is the shared library.

On Windows, a simple solution is to copy the library where the application is:

> cp -v lib/hello.dll app
`lib/hello.dll' -> `app/hello.dll'

On Unix-like OSes, you can use the LD_LIBRARY_PATH environment variable:

> export LD_LIBRARY_PATH=lib

Run the command on Windows:

> app/app.exe
hello

Run the command on Unix-like OSes:

> app/app
hello

I was recently experimenting in order to answer this question I was asking myself. Here are my conclusions:

Since in Windows, you can't be sure that the uname command is available, you can use gcc -dumpmachine. This will display the compiler target.

There may be also a problem when using uname if you want to do some cross-compilation.

Here's a example list of possible output of gcc -dumpmachine:

  • mingw32
  • i686-pc-cygwin
  • x86_64-redhat-linux

You can check the result in the makefile like this:

SYS := $(shell gcc -dumpmachine)
ifneq (, $(findstring linux, $(SYS)))
 # Do Linux things
else ifneq(, $(findstring mingw, $(SYS)))
 # Do MinGW things
else ifneq(, $(findstring cygwin, $(SYS)))
 # Do Cygwin things
else
 # Do things for others
endif

It worked well for me, but I'm not sure it's a reliable way of getting the system type. At least it's reliable about MinGW and that's all I need since it does not require to have the uname command or MSYS package in Windows.

To sum up, uname gives you the system on which you're compiling, and gcc -dumpmachine gives you the system for which you are compiling.


The git makefile contains numerous examples of how to manage without autoconf/automake, yet still work on a multitude of unixy platforms.


Update: I now consider this answer to be obsolete. I posted a new perfect solution further down.

If your makefile may be running on non-Cygwin Windows, uname may not be available. That's awkward, but this is a potential solution. You have to check for Cygwin first to rule it out, because it has WINDOWS in its PATH environment variable too.

ifneq (,$(findstring /cygdrive/,$(PATH)))
    UNAME := Cygwin
else
ifneq (,$(findstring WINDOWS,$(PATH)))
    UNAME := Windows
else
    UNAME := $(shell uname -s)
endif
endif

That's the job that GNU's automake/autoconf are designed to solve. You might want to investigate them.

Alternatively you can set environment variables on your different platforms and make you Makefile conditional against them.