The leastsq method in scipy lib fits a curve to some data. And this method implies that in this data Y values depends on some X argument. And calculates the minimal distance between curve and the data point in the Y axis (dy)
But what if I need to calculate minimal distance in both axes (dy and dx)
Is there some ways to implement this calculation?
Here is a sample of code when using one axis calculation:
import numpy as np
from scipy.optimize import leastsq
xData = [some data...]
yData = [some data...]
def mFunc(p, x, y):
return y - (p[0]*x**p[1]) # is takes into account only y axis
plsq, pcov = leastsq(mFunc, [1,1], args=(xData,yData))
print plsq
I recently tryed scipy.odr library and it returns the proper results only for linear function. For other functions like y=a*x^b it returns wrong results. This is how I use it:
def f(p, x):
return p[0]*x**p[1]
myModel = Model(f)
myData = Data(xData, yData)
myOdr = ODR(myData, myModel , beta0=[1,1])
myOdr.set_job(fit_type=0) #if set fit_type=2, returns the same as leastsq
out = myOdr.run()
out.pprint()
This returns wrong results, not desired, and in some input data not even close to real. May be, there is some special ways of using it, what do I do wrong?
To get the least-squares fit of a polynomial to data, use the polynomial. polyfit() in Python Numpy. The method returns the Polynomial coefficients ordered from low to high. If y was 2-D, the coefficients in column k of coef represent the polynomial fit to the data in y's k-th column.
Orthogonal Distance Regresson (ODR) is the name given to the com- putational problem associated with finding the mciximum likelihood esti- mators of parameters in measurement error models in the case of normally. distributed errors.
The SciPy open source library provides the curve_fit() function for curve fitting via nonlinear least squares. The function takes the same input and output data as arguments, as well as the name of the mapping function to use. The mapping function must take examples of input data and some number of arguments.
The SciPy API provides a 'curve_fit' function in its optimization library to fit the data with a given function. This method applies non-linear least squares to fit the data and extract the optimal parameters out of it.
I've found the solution. Scipy Odrpack works noramally but it needs a good initial guess for correct results. So I divided the process into two steps.
First step: find the initial guess by using ordinaty least squares method.
Second step: substitude these initial guess in ODR as beta0 parameter.
And it works very well with an acceptable speed.
Thank you guys, your advice directed me to the right solution
scipy.odr
implements the Orthogonal Distance Regression. See the instructions for basic use in the docstring and documentation.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With