There was an interesting question on R-help:
"Take the numbers one up to 17. Can you write them out in a line so that every pair of numbers that are next to each other, adds up to give a square number?"
My solution is below and not particularly special. I'm curious about a more elegant and/or robust solution. Maybe a solution that can take an arbitrary string of numbers and order them like this if possible?
sq.test <- function(a, b) {
## test for number pairs that sum to squares.
sqrt(sum(a, b)) == floor(sqrt(sum(a, b)))
}
ok.pairs <- function(n, vec) {
## given n as a member of vec,
## which other members of vec satisfiy sq.test
vec <- vec[vec!=n]
vec[sapply(vec, sq.test, b=n)]
}
grow.seq <- function(y) {
## given a starting point (y) and a pairs list (pl)
## grow the squaring sequence.
ly <- length(y)
if(ly == y[1]) return(y)
## this line is the one that breaks down on other number sets...
y <- c(y, max(pl[[y[ly]]][!pl[[y[ly]]] %in% y]))
y <- grow.seq(y)
return(y)
}
## start vector
x <- 1:17
## get list of possible pairs
pl <- lapply(x, ok.pairs, vec=x)
## pick start at max since few combinations there.
y <- max(x)
grow.seq(y)
To check the perfectness of your square, you can simply calculate the square root of a given number. If the square root is an integer, your number is the perfect square. Let's calculate the squares of the following numbers: 49 and 53 . √49 = 7 - 7 is an integer → number 49 is a perfect square.
A set of two numbers or objects linked in some way is said to be a pair. The pair and is usually denoted ( , ), and is generally considered to be ordered, making it a 2-tuple. In certain circumstances, pairs are also called brothers or twins.
They are 4, 9, 16, 25, 36, 49, 64 and 81. However, there are ten perfect squares from 1 to 10. They are 1, 4, 9, 16, 25, 36, 49, 64, 81 and 100.
Hence, the perfect squares between 1 and 500 are 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441 and 484.
You can use outer
to compute the allowable pairs.
The resulting matrix is the adjacency matrix of a graph,
and you just want a Hamiltonian path on it.
# Allowable pairs form a graph
p <- outer(
1:17, 1:17,
function(u,v) round(sqrt(u + v),6) == floor(sqrt(u+v)) )
)
rownames(p) <- colnames(p) <- 1:17
image(p, col=c(0,1))
# Read the solution on the plot
library(igraph)
g <- graph.adjacency(p, "undirected")
V(g)$label <- V(g)$name
plot(g, layout=layout.fruchterman.reingold)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With