Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Optimize a numpy ndarray indexing operation

I have a numpy operation that looks like the following:

 for i in range(i_max):
    for j in range(j_max):
        r[i, j, x[i, j], y[i, j]] = c[i, j]

where x, y and c have the same shape.

Is it possible to use numpy's advanced indexing to speed this operation up?

I tried using:

i = numpy.arange(i_max)
j = numpy.arange(j_max)
r[i, j, x, y] = c

However, I didn't get the result I expected.

like image 566
Lachlan Tychsen-Smith Avatar asked Sep 17 '15 05:09

Lachlan Tychsen-Smith


1 Answers

Using linear indexing -

d0,d1,d2,d3 = r.shape
np.put(r,np.arange(i_max)[:,None]*d1*d2*d3 + np.arange(j_max)*d2*d3 + x*d3 +y,c)

Benchmarking and verification

Define functions -

def linear_indx(r,x,y,c,i_max,j_max):
    d0,d1,d2,d3 = r.shape
    np.put(r,np.arange(i_max)[:,None]*d1*d2*d3 + np.arange(j_max)*d2*d3 + x*d3 +y,c)
    return r

def org_app(r,x,y,c,i_max,j_max):
    for i in range(i_max):
        for j in range(j_max):
            r[i, j, x[i,j], y[i,j]] = c[i,j]
    return r

Setup input arrays and benchmark -

In [134]: # Setup input arrays
     ...: i_max = 40
     ...: j_max = 50
     ...: D0 = 60
     ...: D1 = 70
     ...: N = 80
     ...: 
     ...: r = np.zeros((D0,D1,N,N))
     ...: c = np.random.rand(i_max,j_max)
     ...: 
     ...: x = np.random.randint(0,N,(i_max,j_max))
     ...: y = np.random.randint(0,N,(i_max,j_max))
     ...: 

In [135]: # Make copies for testing, as both functions make in-situ changes
     ...: r1 = r.copy()
     ...: r2 = r.copy()
     ...: 

In [136]: # Verify results by comparing with original loopy approach
     ...: np.allclose(linear_indx(r1,x,y,c,i_max,j_max),org_app(r2,x,y,c,i_max,j_max))
Out[136]: True

In [137]: # Make copies for testing, as both functions make in-situ changes
     ...: r1 = r.copy()
     ...: r2 = r.copy()
     ...: 

In [138]: %timeit linear_indx(r1,x,y,c,i_max,j_max)
10000 loops, best of 3: 115 µs per loop

In [139]: %timeit org_app(r2,x,y,c,i_max,j_max)
100 loops, best of 3: 2.25 ms per loop
like image 122
Divakar Avatar answered Sep 19 '22 15:09

Divakar