Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Optimising Haskell data reading from file

Tags:

haskell

I am trying to implement Kosaraju's graph algorithm, on a 3.5m line file where each row is two (space separated) Ints representing a graph edge. To start I need to create a summary data structure that has the node and lists of its incoming and outgoing edges. The code below achieves that, but takes over a minute, whereas I can see from posts on the MOOC forum that people using other languages are completing in <<10s. (getLines is taking 10s compared to under 1s in benchmarks I read about.)

I'm new to Haskell and have implemented an accumulation method using foldl' (the ' was a breakthrough in making it terminate at all), but it feels rather imperative in style, and I'm hoping that that's the reason why it is running slow. Moreover, I'm currently planning to use a similar pattern to conduct the depth-first-search, and I fear it will all just become too slow.

I have found this presentation and blog that talk about these sort of issues but at too expert a level.

import System.IO
import Control.Monad
import Data.Map.Strict as Map
import Data.List as L

type NodeName = Int
type Edges = [NodeName]
type Explored = Bool

data Node = Node Explored (Edges, Edges) deriving (Show)

type Graph1 = Map NodeName Node

getLines :: FilePath -> IO [[Int]]
getLines = liftM (fmap (fmap read . words) . lines) . readFile

getLines' :: FilePath -> IO [(Int,Int)]
getLines' = liftM (fmap (tuplify2 . fmap read . words) . lines) . readFile

tuplify2 :: [a] -> (a,a)
tuplify2 [x,y] = (x,y)

main = do
    list <- getLines "testdata.txt"  -- [String]
    --list <- getLines "SCC.txt"  -- [String]   
    let
        list' = createGraph list
    return list'

createGraph :: [[Int]] -> Graph1
createGraph xs = L.foldl' build Map.empty xs
    where
        build :: Graph1-> [Int] -> Graph1
        build = \acc (x:y:_) ->
            let tmpAcc = case Map.lookup x acc of
                Nothing -> Map.insert x (Node False ([y],[])) acc
                Just a -> Map.adjust (\(Node _ (fwd, bck)) -> (Node False ((y:fwd), bck))) x acc
            in case Map.lookup y tmpAcc of
                Nothing -> Map.insert y (Node False ([],[x])) tmpAcc
                Just a -> Map.adjust (\(Node _ (fwd, bck)) -> (Node False (fwd, (x:bck)))) y tmpAcc
like image 695
Simon H Avatar asked Jun 18 '14 05:06

Simon H


1 Answers

Using maps:

  • Use IntMap or HashMap when possible. Both are significantly faster for Int keys than Map. HashMap is usually faster than IntMap but uses more RAM and has a less rich library.
  • Don't do unnecessary lookups. The containers package has a large number of specialized functions. With alter the number of lookups can be halved compared to the createGraph implementation in the question.

Example for createGraph:

import Data.List (foldl')
import qualified Data.IntMap.Strict as IM

type NodeName = Int
type Edges = [NodeName]
type Explored = Bool

data Node = Node Explored Edges Edges deriving (Eq, Show)
type Graph1 = IM.IntMap Node

createGraph :: [(Int, Int)] -> Graph1
createGraph xs = foldl' build IM.empty xs
    where
        addFwd y (Just (Node _ f b)) = Just (Node False (y:f) b)
        addFwd y _                   = Just (Node False [y] [])
        addBwd x (Just (Node _ f b)) = Just (Node False f (x:b))
        addBwd x _                   = Just (Node False [] [x])

        build :: Graph1 -> (Int, Int) -> Graph1
        build acc (x, y) = IM.alter (addBwd x) y $ IM.alter (addFwd y) x acc 

Using vectors:

  • Consider the efficient construction functions (the accumulators, unfolds, generate, iterate, constructN, etc.). These may use mutation behind the scenes but are considerably more convenient to use than actual mutable vectors.
  • In the more general case, use the laziness of boxed vectors to enable self-reference when constructing a vector.
  • Use unboxed vectors when possible.
  • Use unsafe functions when you're absolutely sure about the bounds.
  • Only use mutable vectors when there aren't pure alternatives. In that case, prefer the ST monad to IO. Also, avoid creating many mutable heap objects (i. e. prefer mutable vectors to immutable vectors of mutable references).

Example for createGraph:

import qualified Data.Vector as V

type NodeName = Int
type Edges = [NodeName]
type Explored = Bool

data Node = Node Explored Edges Edges deriving (Eq, Show)
type Graph1 = V.Vector Node

createGraph :: Int -> [(Int, Int)] -> Graph1
createGraph maxIndex edges = graph'' where
    graph    = V.replicate maxIndex (Node False [] [])
    graph'   = V.accum (\(Node e f b) x -> Node e (x:f) b) graph  edges
    graph''  = V.accum (\(Node e f b) x -> Node e f (x:b)) graph' (map (\(a, b) -> (b, a)) edges)

Note that if there are gaps in the range of the node indices, then it'd be wise to either

  1. Contiguously relabel the indices before doing anything else.
  2. Introduce an empty constructor to Node to signify a missing index.

Faster I/O:

  • Use the IO functions from Data.Text or Data.ByteString. In both cases there are also efficient functions for breaking input into lines or words.

Example:

import qualified Data.ByteString.Char8 as BS
import System.IO

getLines :: FilePath -> IO [(Int, Int)]
getLines path = do
    lines <- (map BS.words . BS.lines) `fmap` BS.readFile path
    let pairs = (map . map) (maybe (error "can't read Int") fst . BS.readInt) lines
    return [(a, b) | [a, b] <- pairs]

Benchmarking:

Always do it, unlike me in this answer. Use criterion.

like image 122
András Kovács Avatar answered Oct 04 '22 16:10

András Kovács