I have several fish images in my database , My Goal is to find similarity score between user input fish image and images in database. For that I am using opencv Feature matching + Homograpy from this link.
http://opencv-python-tutroals.readthedocs.org/en/latest/py_tutorials/py_feature2d/py_feature_homography/py_feature_homography.html#feature-homography
My current code is as followed.
query_image = '/home/zealous/Pictures/train_images/AbudefdufWhitleyiJER.jpg'
trained_image_folder = '/home/zealous/Pictures/train_images'
My current code is as followed.
def feature_matcher(query_image, image_folder):
min_match_count = 10
img1 = cv2.imread(query_image, 0)
surf = cv2.xfeatures2d.SURF_create(800)
kp1, des1 = surf.detectAndCompute(img1, None)
bf = cv2.BFMatcher(cv2.NORM_L2)
all_files = next(os.walk(image_folder))[2]
for file_name_temp in all_files:
try:
train_image = image_folder + '/' + file_name_temp
img2 = cv2.imread(train_image, 0)
surf = cv2.xfeatures2d.SURF_create(800)
kp2, des2 = surf.detectAndCompute(img2, None)
matches = bf.knnMatch(des1, des2, k=2)
good = []
for m, n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
if len(good) > min_match_count:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1,1,2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
matchesMask = mask.ravel().tolist()
h, w = img1.shape
pts = np.float32([[0, 0], [0, h-1], [w-1, h-1], [w-1, 0]]).reshape(-1,1,2)
dst = cv2.perspectiveTransform(pts, M)
if not M==None:
print "\n"
print "-"*2, file_name_temp
print "number of good matches", len(good)
print "*"*10, matchesMask
I am getting pretty good output which I am assuming by seeing number of good matches and matchesMask variable (which contains some 0's and 1's). If database contains same image as input image then there will be many good matches and all matchesMask elements will be 1.
My question is how to calculate similarity score based on this? should I assume that the more number of 1's (Inliers) are there in matchesMask, more both images are similar or should I take ratio between number of 1's(inliers) and 0's(outliers) and calculate similarity based on that.
I know this has been discussed in many questions , but all the suggestions and answers are in C++ language , so I cant figure out solution..
In a similarity score you don't want to include outliers - they are outliers because they don't help with your data. Just take the number of 1s (inliers) as the similarity score - you should get decent results.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With