I believe I am having a memory issue using numpy arrays. The following code is being run for hours on end:
new_data = npy.array([new_x, new_y1, new_y2, new_y3])
private.data = npy.row_stack([private.data, new_data])
where new_x, new_y1, new_y2, new_y3 are floats.
After about 5 hours of recording this data every second (more than 72000 floats), the program becomes unresponsive. What I think is happening is some kind of realloc and copy operation that is swamping the process. Does anyone know if this is what is happening?
I need a way to record this data without encountering this slowdown issue. There is no way to know even approximately the size of this array beforehand. It does not necessarily need to use a numpy array, but it needs to be something similar. Does anyone know of a good method?
Use Python lists. Seriously, they grow far more efficiently. This is what they are designed for. They are remarkably efficient in this setting.
If you need to create an array out of them at the end (or even occasionally in the midst of this computation), it will be far more efficient to accumulate in a list first.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With