I am facing some problem with the apply function passing on arguments to a function when not needed. I understand that apply don't know what to do with the optional arguments and just pass them on the function.
But anyhow, here is what I would like to do:
First I want to specify a list of functions that I would like to use.
functions <- list(length, sum)
Then I would like to create a function which apply these specified functions on a data set.
myFunc <- function(data, functions) {
for (i in 1:length(functions)) print(apply(X=data, MARGIN=2, FUN=functions[[i]]))
}
This works fine.
data <- cbind(rnorm(100), rnorm(100))
myFunc(data, functions)
[1] 100 100
[1] -0.5758939 -5.1311173
But I would also like to use additional arguments for some functions, e.g.
power <- function(x, p) x^p
Which don't work as I want to. If I modify myFunc
to:
myFunc <- function(data, functions, ...) {
for (i in 1:length(functions)) print(apply(X=data, MARGIN=2, FUN=functions[[i]], ...))
}
functions
as
functions <- list(length, sum, power)
and then try my function I get
myFunc(data, functions, p=2)
Error in FUN(newX[, i], ...) :
2 arguments passed to 'length' which requires 1
How may I solve this issue?
Sorry for the wall of text. Thank you!
You can use Curry
from functional
to fix the parameter you want, put the function in the list of function you want to apply and finally iterate over this list of functions:
library(functional)
power <- function(x, p) x^p
funcs = list(length, sum, Curry(power, p=2), Curry(power, p=3))
lapply(funcs, function(f) apply(data, 2 , f))
With your code you can use:
functions <- list(length, sum, Curry(power, p=2))
myFunc(data, functions)
I'd advocate using Colonel's Curry
approach, but if you want to stick to base R you can always:
funcs <- list(length, sum, function(x) power(x, 2))
which is roughly what Curry
ends up doing
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With