I need to convert normalized integer values to and from real floating-point values. For instance, for int16_t, a value of 1.0 is represented by 32767 and -1.0 is represented by -32768. Although it's a bit tedious to do this for each integer type, both signed and unsigned, it's still easy enough to write by hand.
However, I want to use standard methods whenever possible rather than going off and reinventing the wheel, so what I'm looking for is something like a standard C or C++ header, a Boost library, or some other small, portable, easily-incorporated source that already performs these conversions.
Here's a templated solution using std::numeric_limits
:
#include <cstdint>
#include <limits>
template <typename T>
constexpr double normalize (T value) {
return value < 0
? -static_cast<double>(value) / std::numeric_limits<T>::min()
: static_cast<double>(value) / std::numeric_limits<T>::max()
;
}
int main () {
// Test cases evaluated at compile time.
static_assert(normalize(int16_t(32767)) == 1, "");
static_assert(normalize(int16_t(0)) == 0, "");
static_assert(normalize(int16_t(-32768)) == -1, "");
static_assert(normalize(int16_t(-16384)) == -0.5, "");
static_assert(normalize(uint16_t(65535)) == 1, "");
static_assert(normalize(uint16_t(0)) == 0, "");
}
This handles both signed and unsigned integers, and 0 does normalize to 0.
View Successful Compilation Result
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With