The following code is, as far as I understand it, undefined behavior according to the c++ standard (section 7.1.5.1.4 [dcl.type.cv]/4 in particular).
#include <iostream>
struct F;
F* g;
struct F {
F() : val(5)
{
g = this;
}
int val;
};
const F f;
int main() {
g->val = 8;
std::cout << f.val << std::endl;
}
However, this prints '8' with every compiler and optimization setting I have tried.
Question: Is there an example that will exhibit unexpected results with this type of "implicit const_cast"?
I am hoping for something as spectacular as the results of
#include <iostream>
int main() {
for (int i = 0; i <=4; ++i)
std::cout << i * 1000000000 << std::endl;
}
on, e.g., gcc 4.8.5 with -O2
EDIT: the relevant section from the standard
7.1.5.1.4: Except that any class member declared mutable (7.1.1) can be modified, any attempt to modify a const object during its lifetime (3.8) results in undefined behavior.
In reply to the comment suggesting a duplicate; it is not a duplicate because I am asking for an example where "unexpected" results occur.
Not as spectacular:
f.h
(guards omitted):
struct F;
extern F* g;
struct F {
F() : val(5)
{
g = this;
}
int val;
};
extern const F f;
void h();
TU1:
#include "f.h"
// definitions
F* g;
const F f;
void h() {}
TU2:
#include "f.h"
#include <iostream>
int main() {
h(); // ensure that globals have been initialized
int val = f.val;
g->val = 8;
std::cout << (f.val == val) << '\n';
}
Prints 1
when compiled with g++ -O2
, and 0
when compiled with -O0
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With