I need to plot a curve with standard error as a shaded area. For example, I have a matrix like this one, as time bins:
Age CO2 Standard_error
0 1 1.42E-13
0.5 0.998268422989761 0.00169763164186241
1 0.995743963199747 0.00479900584235718
1.5 0.995062233834876 0.0103274581695151
2 1.00398569520812 0.0195262589284694
2.5 1.03116826950464 0.0329875314671063
3 1.07422916427453 0.049116358866183
3.5 1.11992125335082 0.0646007093291105
4 1.15670166266193 0.0770010287134558
4.5 1.18120894601468 0.0860204557092314
5 1.1972210240662 0.0930892044882256
5.5 1.21094781023761 0.0999899575457834
6 1.22407556599768 0.10698386874689
6.5 1.23264038072763 0.112706241640139
7 1.23471241147135 0.116401516372119
7.5 1.23341569261173 0.118772825620555
8 1.23279196992244 0.120901622556905
8.5 1.2346500417623 0.123408621016096
9 1.23831115917507 0.126316578608025
9.5 1.24201463025631 0.129312831831815
And I would like to plot the curve with this estimated standard error. Most of the functions I have seen (in particular within ggplot2) estimate the standard error, and I have these data already estimated. Any help is appreciated!
You can use ggplot2
in combination with geom_ribbon
:
library(ggplot2)
ggplot(dat, aes(x = Age, y = CO2)) +
geom_line() +
geom_ribbon(aes(ymin = CO2 - Standard_error,
ymax = CO2 + Standard_error), alpha = 0.2)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With