It is all about data, if you have similar data in multiple groups, there is no logic in storing it in multiple table. Always better to store same type of data in a table (entity). For example, when a group having an attribute Mobile_Number , then it there is no logic in storing Mobile_number column in multiple tables.
In many cases, it may be best to split information into multiple related tables, so that there is less redundant data and fewer places to update.
The majority of databases you'll work with as a developer will have more than one table, and those tables will be connected together in various ways to form table relationships.
MySQL has hard limit of 4096 columns per table, but the effective maximum may be less for a given table. The exact column limit depends on several factors: The maximum row size for a table constrains the number (and possibly size) of columns because the total length of all columns cannot exceed this size.
Any time information is one-to-one (each user has one name and password), then it's probably better to have it one table, since it reduces the number of joins the database will need to do to retrieve results. I think some databases have a limit on the number of columns per table, but I wouldn't worry about it in normal cases, and you can always split it later if you need to.
If the data is one-to-many (each user has thousands of rows of usage info), then it should be split into separate tables to reduce duplicate data (duplicate data wastes storage space, cache space, and makes the database harder to maintain).
You might find the Wikipedia article on database normalization interesting, since it discusses the reasons for this in depth:
Database normalization is the process of organizing the fields and tables of a relational database to minimize redundancy and dependency. Normalization usually involves dividing large tables into smaller (and less redundant) tables and defining relationships between them. The objective is to isolate data so that additions, deletions, and modifications of a field can be made in just one table and then propagated through the rest of the database via the defined relationships.
Denormalization is also something to be aware of, because there are cases where repeating data is better (since it reduces the amount of work the database needs to do when reading data). I'd highly recommend making your data as normalized as possible to start out, and only denormalize if you're aware of performance problems in specific queries.
One big table is often a poor choice. Related tables are what relational database were designed to work with. If you index properly and know how to write performant queries, they are going to perform fine.
When tables get too many columns, then you can run into issues with the actual size of the page that the database is storing the information on. Either the record can end up being too large for the page, in which can you may end up not being able to create or update a specific record which makes users unhappy or you may (in SQL Server at least) be allowed some overflow for particular datatypes (with a set of rules you need to look up if you are doing this) but if many records will overflow the page size you can create tremedous performance problems. Now how MYSQL handles the pages and whether you have a problem when the potential page size gets too large is something you would have to look up in the documentation for that database.
Came across this, and as someone who used to use MySQL a lot, and then switched over to Postgres recently, one of the big advantages is that you can add JSON objects to a field in Postgres.
So if you are in this situation, you don't have to necessarily decide between one large table with many columns and splitting it up, but you can merge columns into JSON objects to reduce it e.g. instead of address being 5 columns, it can just be one. You can also query on that object too.
I have a good example. Overly Normalized database with the following set of relationships:
people -> rel_p2staff -> staff
and
people -> rel_p2prosp -> prospects
Where people has names and persons details, staff has just the staff record details, prospects has just prospects details, and the rel tables are relationship tables with foreign keys from people linking to staff and prospects.
This sort of design carries on for entire database.
Now to query this set of relations it's a multi-table join every time, sometimes 8 and more table join. It has been working fine up to mid this year, when it started getting very slow now that we past 40000 records of people.
Indexing and all low hanging fruits had been used up last year, all queries are optimized to perfection. This is the end of the road for the particular normalized design and management now approved a rebuilt of entire application that depends on it as well as restructure of the database, over a term of 6 months. $$$$ Ouch.
The solution will be to have a direct relation for people -> staff
and people -> prospect
ask yourself these questions if you put everything in one table, will you have multiple rows for that user? If you have to update a user do you want to keep an audit trail? Can the user have more than one instance of a data element? (like phone number for instance) will you have a case where you might want to add an element or set of elements later? if you answer yes then most likely you want to have child tables with foreign key relationships.
Pros of parent/child tables is data integrity, performance via indexes (yes you can do it on a flat table also) and IMO easier to maintain if you need to add a field later, especially if it will be a required field.
Cons design is harder, queries become slightly more complex
But, there are many cases where one big flat table will be appropriate so you have to look at your situation to decide.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With