I am doing a machine learning project in Python, so I have to do parallel predict function, which I'm using in my program.
from multiprocessing.dummy import Pool from multiprocessing import cpu_count def multi_predict(X, predict, *args, **kwargs): pool = Pool(cpu_count()) results = pool.map(predict, X) pool.close() pool.join() return results
The problem is that all my CPUs loaded only on 20-40% (in sum it's 100%). I use multiprocessing.dummy because I have some problems with multiprocessing module in pickling function.
If your program is IO-bound, both multithreading and multiprocessing in Python will work smoothly. However, If the code is CPU-bound and your machine has multiple cores, multiprocessing would be a better choice.
Key Takeaways. Python is NOT a single-threaded language. Python processes typically use a single thread because of the GIL. Despite the GIL, libraries that perform computationally heavy tasks like numpy, scipy and pytorch utilise C-based implementations under the hood, allowing the use of multiple cores.
2-Use Cases for Multiprocessing: Multiprocessing outshines threading in cases where the program is CPU intensive and doesn't have to do any IO or user interaction. Show activity on this post. Process may have multiple threads. These threads may share memory and are the units of execution within a process.
But the creation of processes itself is a CPU heavy task and requires more time than the creation of threads. Also, processes require more resources than threads. Hence, it is always better to have multiprocessing as the second option for IO-bound tasks, with multithreading being the first.
When you use multiprocessing.dummy
, you're using threads, not processes:
multiprocessing.dummy
replicates the API ofmultiprocessing
but is no more than a wrapper around thethreading
module.
That means you're restricted by the Global Interpreter Lock (GIL), and only one thread can actually execute CPU-bound operations at a time. That's going to keep you from fully utilizing your CPUs. If you want get full parallelism across all available cores, you're going to need to address the pickling issue you're hitting with multiprocessing.Pool
.
Note that multiprocessing.dummy
might still be useful if the work you need to parallelize is IO bound, or utilizes a C-extension that releases the GIL. For pure Python code, however, you'll need multiprocessing
.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With