Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Multiprocessing Queue.get() hangs

I'm trying to implement basic multiprocessing and I've run into an issue. The python script is attached below.

import time, sys, random, threading
from multiprocessing import Process
from Queue import Queue
from FrequencyAnalysis import FrequencyStore, AnalyzeFrequency

append_queue = Queue(10)
database = FrequencyStore()

def add_to_append_queue(_list):
    append_queue.put(_list)

def process_append_queue():
    while True:
        item = append_queue.get()
        database.append(item)
        print("Appended to database in %.4f seconds" % database.append_time)
        append_queue.task_done()
    return

def main():
    database.load_db()
    print("Database loaded in %.4f seconds" % database.load_time)
    append_queue_process = Process(target=process_append_queue)
    append_queue_process.daemon = True
    append_queue_process.start()
    #t = threading.Thread(target=process_append_queue)
    #t.daemon = True
    #t.start()

    while True:
        path = raw_input("file: ")
        if path == "exit":
            break
        a = AnalyzeFrequency(path)
        a.analyze()
        print("Analyzed file in %.4f seconds" % a._time)
        add_to_append_queue(a.get_results())

    append_queue.join()
    #append_queue_process.join()
    database.save_db()
    print("Database saved in %.4f seconds" % database.save_time)
    sys.exit(0)

if __name__=="__main__":
    main()

The AnalyzeFrequency analyzes the frequencies of words in a file and get_results() returns a sorted list of said words and frequencies. The list is very large, perhaps 10000 items.

This list is then passed to the add_to_append_queue method which adds it to a queue. The process_append_queue takes the items one by one and adds the frequencies to a "database". This operation takes a bit longer than the actual analysis in main() so I am trying to use a seperate process for this method. When I try and do this with the threading module, everything works perfectly fine, no errors. When I try and use Process, the script hangs at item = append_queue.get().

Could someone please explain what is happening here, and perhaps direct me toward a fix?

All answers appreciated!

UPDATE

The pickle error was my fault, it was just a typo. Now I am using the Queue class within multiprocessing but the append_queue.get() method still hangs. NEW CODE

import time, sys, random
from multiprocessing import Process, Queue
from FrequencyAnalysis import FrequencyStore, AnalyzeFrequency

append_queue = Queue()
database = FrequencyStore()

def add_to_append_queue(_list):
    append_queue.put(_list)

def process_append_queue():
    while True:
        database.append(append_queue.get())
        print("Appended to database in %.4f seconds" % database.append_time)
    return

def main():
    database.load_db()
    print("Database loaded in %.4f seconds" % database.load_time)
    append_queue_process = Process(target=process_append_queue)
    append_queue_process.daemon = True
    append_queue_process.start()
    #t = threading.Thread(target=process_append_queue)
    #t.daemon = True
    #t.start()

    while True:
        path = raw_input("file: ")
        if path == "exit":
            break
        a = AnalyzeFrequency(path)
        a.analyze()
        print("Analyzed file in %.4f seconds" % a._time)
        add_to_append_queue(a.get_results())

    #append_queue.join()
    #append_queue_process.join()
    print str(append_queue.qsize())
    database.save_db()
    print("Database saved in %.4f seconds" % database.save_time)
    sys.exit(0)

if __name__=="__main__":
    main()

UPDATE 2

This is the database code:

class FrequencyStore:

    def __init__(self):
        self.sorter = Sorter()
        self.db = {}
        self.load_time = -1
        self.save_time = -1
        self.append_time = -1
        self.sort_time = -1

    def load_db(self):
        start_time = time.time()

        try:
            file = open("results.txt", 'r')
        except:
            raise IOError

        self.db = {}
        for line in file:
            word, count = line.strip("\n").split("=")
            self.db[word] = int(count)
        file.close()

        self.load_time = time.time() - start_time

    def save_db(self):
        start_time = time.time()

        _db = []
        for key in self.db:
            _db.append([key, self.db[key]])
        _db = self.sort(_db)

        try:
            file = open("results.txt", 'w')
        except:
            raise IOError

        file.truncate(0)
        for x in _db:
            file.write(x[0] + "=" + str(x[1]) + "\n")
        file.close()

        self.save_time = time.time() - start_time

    def create_sorted_db(self):
        _temp_db = []
        for key in self.db:
            _temp_db.append([key, self.db[key]])
        _temp_db = self.sort(_temp_db)
        _temp_db.reverse()
        return _temp_db

    def get_db(self):
        return self.db

    def sort(self, _list):
        start_time = time.time()

        _list = self.sorter.mergesort(_list)
        _list.reverse()

        self.sort_time = time.time() - start_time
        return _list

    def append(self, _list):
        start_time = time.time()

        for x in _list:
            if x[0] not in self.db:
                self.db[x[0]] = x[1]
            else:
                self.db[x[0]] += x[1]

        self.append_time = time.time() - start_time
like image 935
skyguy126 Avatar asked May 15 '16 22:05

skyguy126


People also ask

What is queue in multiprocessing?

A queue is a data structure on which items can be added by a call to put() and from which items can be retrieved by a call to get(). The multiprocessing. Queue provides a first-in, first-out FIFO queue, which means that the items are retrieved from the queue in the order they were added.

Is multiprocessing queue thread safe?

This includes queues in the multiprocessing.Queues are thread and process safe. This means that processes may get() and put() items from and to the queue concurrently without fear of a race condition. You can learn more about to how to use queues with multiple processes in the tutorial: Multiprocessing Queue in Python.

How do you stop multiprocessing?

A process can be killed by calling the Process. terminate() function. The call will only terminate the target process, not child processes. The method is called on the multiprocessing.


1 Answers

Comments suggest you're trying to run this on Windows. As I said in a comment,

If you're running this on Windows, it can't work - Windows doesn't have fork(), so each process gets its own Queue and they have nothing to do with each other. The entire module is imported "from scratch" by each process on Windows. You'll need to create the Queue in main(), and pass it as an argument to the worker function.

Here's fleshing out what you need to do to make it portable, although I removed all the database stuff because it's irrelevant to the problems you've described so far. I also removed the daemon fiddling, because that's usually just a lazy way to avoid shutting down things cleanly, and often as not will come back to bite you later:

def process_append_queue(append_queue):
    while True:
        x = append_queue.get()
        if x is None:
            break
        print("processed %d" % x)
    print("worker done")

def main():
    import multiprocessing as mp

    append_queue = mp.Queue(10)
    append_queue_process = mp.Process(target=process_append_queue, args=(append_queue,))
    append_queue_process.start()
    for i in range(100):
        append_queue.put(i)
    append_queue.put(None)  # tell worker we're done
    append_queue_process.join()

if __name__=="__main__":
    main()

The output is the "obvious" stuff:

processed 0
processed 1
processed 2
processed 3
processed 4
...
processed 96
processed 97
processed 98
processed 99
worker done

Note: because Windows doesn't (can't) fork(), it's impossible for worker processes to inherit any Python object on Windows. Each process runs the entire program from its start. That's why your original program couldn't work: each process created its own Queue, wholly unrelated to the Queue in the other process. In the approach shown above, only the main process creates a Queue, and the main process passes it (as an argument) to the worker process.

like image 188
Tim Peters Avatar answered Sep 18 '22 20:09

Tim Peters