Shared memory : multiprocessing module provides Array and Value objects to share data between processes. Array: a ctypes array allocated from shared memory. Value: a ctypes object allocated from shared memory.
fork is called by multiprocessing. Process , as this answer backs up. The important distinction, then, is os. fork copies everything in the current process using Unix's forking, which means at the time of forking both processes are the same with PID differences.
Multiprocessor system facilitates parallel program execution and read/write sharing of data and thus may cause the processors to concurrently access location in the shared memory. Therefore, a correct and reliable mechanism is needed to serialize this access.
A general answer involves using a Manager
object. Adapted from the docs:
from multiprocessing import Process, Manager
def f(d):
d[1] += '1'
d['2'] += 2
if __name__ == '__main__':
manager = Manager()
d = manager.dict()
d[1] = '1'
d['2'] = 2
p1 = Process(target=f, args=(d,))
p2 = Process(target=f, args=(d,))
p1.start()
p2.start()
p1.join()
p2.join()
print d
Output:
$ python mul.py
{1: '111', '2': 6}
multiprocessing is not like threading. Each child process will get a copy of the main process's memory. Generally state is shared via communication (pipes/sockets), signals, or shared memory.
Multiprocessing makes some abstractions available for your use case - shared state that's treated as local by use of proxies or shared memory: http://docs.python.org/library/multiprocessing.html#sharing-state-between-processes
Relevant sections:
In addition to @senderle's here, some might also be wondering how to use the functionality of multiprocessing.Pool
.
The nice thing is that there is a .Pool()
method to the manager
instance that mimics all the familiar API of the top-level multiprocessing
.
from itertools import repeat
import multiprocessing as mp
import os
import pprint
def f(d: dict) -> None:
pid = os.getpid()
d[pid] = "Hi, I was written by process %d" % pid
if __name__ == '__main__':
with mp.Manager() as manager:
d = manager.dict()
with manager.Pool() as pool:
pool.map(f, repeat(d, 10))
# `d` is a DictProxy object that can be converted to dict
pprint.pprint(dict(d))
Output:
$ python3 mul.py
{22562: 'Hi, I was written by process 22562',
22563: 'Hi, I was written by process 22563',
22564: 'Hi, I was written by process 22564',
22565: 'Hi, I was written by process 22565',
22566: 'Hi, I was written by process 22566',
22567: 'Hi, I was written by process 22567',
22568: 'Hi, I was written by process 22568',
22569: 'Hi, I was written by process 22569',
22570: 'Hi, I was written by process 22570',
22571: 'Hi, I was written by process 22571'}
This is a slightly different example where each process just logs its process ID to the global DictProxy
object d
.
I'd like to share my own work that is faster than Manager's dict and is simpler and more stable than pyshmht library that uses tons of memory and doesn't work for Mac OS. Though my dict only works for plain strings and is immutable currently. I use linear probing implementation and store keys and values pairs in a separate memory block after the table.
from mmap import mmap
import struct
from timeit import default_timer
from multiprocessing import Manager
from pyshmht import HashTable
class shared_immutable_dict:
def __init__(self, a):
self.hs = 1 << (len(a) * 3).bit_length()
kvp = self.hs * 4
ht = [0xffffffff] * self.hs
kvl = []
for k, v in a.iteritems():
h = self.hash(k)
while ht[h] != 0xffffffff:
h = (h + 1) & (self.hs - 1)
ht[h] = kvp
kvp += self.kvlen(k) + self.kvlen(v)
kvl.append(k)
kvl.append(v)
self.m = mmap(-1, kvp)
for p in ht:
self.m.write(uint_format.pack(p))
for x in kvl:
if len(x) <= 0x7f:
self.m.write_byte(chr(len(x)))
else:
self.m.write(uint_format.pack(0x80000000 + len(x)))
self.m.write(x)
def hash(self, k):
h = hash(k)
h = (h + (h >> 3) + (h >> 13) + (h >> 23)) * 1749375391 & (self.hs - 1)
return h
def get(self, k, d=None):
h = self.hash(k)
while True:
x = uint_format.unpack(self.m[h * 4:h * 4 + 4])[0]
if x == 0xffffffff:
return d
self.m.seek(x)
if k == self.read_kv():
return self.read_kv()
h = (h + 1) & (self.hs - 1)
def read_kv(self):
sz = ord(self.m.read_byte())
if sz & 0x80:
sz = uint_format.unpack(chr(sz) + self.m.read(3))[0] - 0x80000000
return self.m.read(sz)
def kvlen(self, k):
return len(k) + (1 if len(k) <= 0x7f else 4)
def __contains__(self, k):
return self.get(k, None) is not None
def close(self):
self.m.close()
uint_format = struct.Struct('>I')
def uget(a, k, d=None):
return to_unicode(a.get(to_str(k), d))
def uin(a, k):
return to_str(k) in a
def to_unicode(s):
return s.decode('utf-8') if isinstance(s, str) else s
def to_str(s):
return s.encode('utf-8') if isinstance(s, unicode) else s
def mmap_test():
n = 1000000
d = shared_immutable_dict({str(i * 2): '1' for i in xrange(n)})
start_time = default_timer()
for i in xrange(n):
if bool(d.get(str(i))) != (i % 2 == 0):
raise Exception(i)
print 'mmap speed: %d gets per sec' % (n / (default_timer() - start_time))
def manager_test():
n = 100000
d = Manager().dict({str(i * 2): '1' for i in xrange(n)})
start_time = default_timer()
for i in xrange(n):
if bool(d.get(str(i))) != (i % 2 == 0):
raise Exception(i)
print 'manager speed: %d gets per sec' % (n / (default_timer() - start_time))
def shm_test():
n = 1000000
d = HashTable('tmp', n)
d.update({str(i * 2): '1' for i in xrange(n)})
start_time = default_timer()
for i in xrange(n):
if bool(d.get(str(i))) != (i % 2 == 0):
raise Exception(i)
print 'shm speed: %d gets per sec' % (n / (default_timer() - start_time))
if __name__ == '__main__':
mmap_test()
manager_test()
shm_test()
On my laptop performance results are:
mmap speed: 247288 gets per sec
manager speed: 33792 gets per sec
shm speed: 691332 gets per sec
simple usage example:
ht = shared_immutable_dict({'a': '1', 'b': '2'})
print ht.get('a')
Maybe you can try pyshmht, sharing memory based hash table extension for Python.
Notice
It's not fully tested, just for your reference.
It currently lacks lock/sem mechanisms for multiprocessing.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With